1,120 research outputs found

    Coloring Graphs having Few Colorings over Path Decompositions

    Full text link
    Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (kϵ)pw(G)poly(n)(k-\epsilon)^{\operatorname{pw}(G)}\operatorname{poly}(n) time algorithm for deciding if an nn-vertex graph GG with pathwidth pw(G)\operatorname{pw}(G) admits a proper vertex coloring with kk colors unless the Strong Exponential Time Hypothesis (SETH) is false. We show here that nevertheless, when k>Δ/2+1k>\lfloor \Delta/2 \rfloor + 1, where Δ\Delta is the maximum degree in the graph GG, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph GG along with a path decomposition of GG with pathwidth pw(G)\operatorname{pw}(G) runs in (Δ/2+1)pw(G)poly(n)s(\lfloor \Delta/2 \rfloor + 1)^{\operatorname{pw}(G)}\operatorname{poly}(n)s time, that distinguishes between kk-colorable graphs having at most ss proper kk-colorings and non-kk-colorable graphs. We also show how to obtain a kk-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than kk at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is kk-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few kk-colorings. Yet every non-kk-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases.Comment: Strengthened result from uniquely kk-colorable graphs to graphs with few kk-colorings. Also improved running tim

    Algebraic Characterization of Uniquely Vertex Colorable Graphs

    Full text link
    The study of graph vertex colorability from an algebraic perspective has introduced novel techniques and algorithms into the field. For instance, it is known that kk-colorability of a graph GG is equivalent to the condition 1IG,k1 \in I_{G,k} for a certain ideal I_{G,k} \subseteq \k[x_1, ..., x_n]. In this paper, we extend this result by proving a general decomposition theorem for IG,kI_{G,k}. This theorem allows us to give an algebraic characterization of uniquely kk-colorable graphs. Our results also give algorithms for testing unique colorability. As an application, we verify a counterexample to a conjecture of Xu concerning uniquely 3-colorable graphs without triangles.Comment: 15 pages, 2 figures, print version, to appear J. Comb. Th. Ser.
    corecore