29,499 research outputs found

    Approximation bounds on maximum edge 2-coloring of dense graphs

    Full text link
    For a graph GG and integer q≥2q\geq 2, an edge qq-coloring of GG is an assignment of colors to edges of GG, such that edges incident on a vertex span at most qq distinct colors. The maximum edge qq-coloring problem seeks to maximize the number of colors in an edge qq-coloring of a graph GG. The problem has been studied in combinatorics in the context of {\em anti-Ramsey} numbers. Algorithmically, the problem is NP-Hard for q≥2q\geq 2 and assuming the unique games conjecture, it cannot be approximated in polynomial time to a factor less than 1+1/q1+1/q. The case q=2q=2, is particularly relevant in practice, and has been well studied from the view point of approximation algorithms. A 22-factor algorithm is known for general graphs, and recently a 5/35/3-factor approximation bound was shown for graphs with perfect matching. The algorithm (which we refer to as the matching based algorithm) is as follows: "Find a maximum matching MM of GG. Give distinct colors to the edges of MM. Let C1,C2,…,CtC_1,C_2,\ldots, C_t be the connected components that results when M is removed from G. To all edges of CiC_i give the (∣M∣+i)(|M|+i)th color." In this paper, we first show that the approximation guarantee of the matching based algorithm is (1+2δ)(1 + \frac {2} {\delta}) for graphs with perfect matching and minimum degree δ\delta. For δ≥4\delta \ge 4, this is better than the 53\frac {5} {3} approximation guarantee proved in {AAAP}. For triangle free graphs with perfect matching, we prove that the approximation factor is (1+1δ−1)(1 + \frac {1}{\delta - 1}), which is better than 5/35/3 for δ≥3\delta \ge 3.Comment: 11pages, 3 figure

    Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles

    Full text link
    Given a simple graph G=(V,E)G=(V,E), a subset of EE is called a triangle cover if it intersects each triangle of GG. Let νt(G)\nu_t(G) and τt(G)\tau_t(G) denote the maximum number of pairwise edge-disjoint triangles in GG and the minimum cardinality of a triangle cover of GG, respectively. Tuza conjectured in 1981 that τt(G)/νt(G)≤2\tau_t(G)/\nu_t(G)\le2 holds for every graph GG. In this paper, using a hypergraph approach, we design polynomial-time combinatorial algorithms for finding small triangle covers. These algorithms imply new sufficient conditions for Tuza's conjecture on covering and packing triangles. More precisely, suppose that the set TG\mathscr T_G of triangles covers all edges in GG. We show that a triangle cover of GG with cardinality at most 2νt(G)2\nu_t(G) can be found in polynomial time if one of the following conditions is satisfied: (i) νt(G)/∣TG∣≥13\nu_t(G)/|\mathscr T_G|\ge\frac13, (ii) νt(G)/∣E∣≥14\nu_t(G)/|E|\ge\frac14, (iii) ∣E∣/∣TG∣≥2|E|/|\mathscr T_G|\ge2. Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs, Combinatorial algorithm

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Vertex decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity

    Get PDF
    We call a (simple) graph G codismantlable if either it has no edges or else it has a codominated vertex x, meaning that the closed neighborhood of x contains that of one of its neighbor, such that G-x codismantlable. We prove that if G is well-covered and it lacks induced cycles of length four, five and seven, than the vertex decomposability, codismantlability and Cohen-Macaulayness for G are all equivalent. The rest deals with the computation of Castelnuovo-Mumford regularity of codismantlable graphs. Note that our approach complements and unifies many of the earlier results on bipartite, chordal and very well-covered graphs
    • …
    corecore