8,872 research outputs found

    An efficient heuristic for the multi-vehicle one-to-one pickup and delivery problem with split loads

    Get PDF
    In this study, we consider the Multi-vehicle One-to-one Pickup and Delivery Problem with Split Loads (MPDPSL). This problem is a generalization of the one-to-one Pickup and Delivery Problem (PDP) where each load can be served by multiple vehicles as well as multiple stops by the same vehicle. In practice, split deliveries is a viable option in many settings where the load can be physically split, such as courier services of third party logistics operators. We propose an efficient heuristic that combines the strengths of Tabu Search and Simulated Annealing for the solution of MPDPSL. Results from experiments on two problems sets in the literature indicate that the heuristic is capable of producing good quality solutions in reasonable time. The experiments also demonstrate that up to 33\% savings can be obtained by allowing split loads; however, the magnitude of savings is dependent largely on the spatial distribution of the pickup and delivery points

    Heuristic algorithms for the min-max edge 2-coloring problem

    Full text link
    In multi-channel Wireless Mesh Networks (WMN), each node is able to use multiple non-overlapping frequency channels. Raniwala et al. (MC2R 2004, INFOCOM 2005) propose and study several such architectures in which a computer can have multiple network interface cards. These architectures are modeled as a graph problem named \emph{maximum edge qq-coloring} and studied in several papers by Feng et. al (TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016). Later on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an alternative variant, named the \emph{min-max edge qq-coloring}. The above mentioned graph problems, namely the maximum edge qq-coloring and the min-max edge qq-coloring are studied mainly from the theoretical perspective. In this paper, we study the min-max edge 2-coloring problem from a practical perspective. More precisely, we introduce, implement and test four heuristic approximation algorithms for the min-max edge 22-coloring problem. These algorithms are based on a \emph{Breadth First Search} (BFS)-based heuristic and on \emph{local search} methods like basic \emph{hill climbing}, \emph{simulated annealing} and \emph{tabu search} techniques, respectively. Although several algorithms for particular graph classes were proposed by Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques, hypergraphs), we design the first algorithms for general graphs. We study and compare the running data for all algorithms on Unit Disk Graphs, as well as some graphs from the DIMACS vertex coloring benchmark dataset.Comment: This is a post-peer-review, pre-copyedit version of an article published in International Computing and Combinatorics Conference (COCOON'18). The final authenticated version is available online at: http://www.doi.org/10.1007/978-3-319-94776-1_5

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    Complete local search with memory

    Get PDF
    Neighborhood search heuristics like local search and its variants are some of the most popular approaches to solve discrete optimization problems of moderate to large size. Apart from tabu search, most of these heuristics are memoryless. In this paper we introduce a new neighborhood search heuristic that makes effctive use of memory structures in a way that is different from tabu search. We report computational experiments with this heuristic on the traveling salesperson problem and the subset sum problem.

    Joint QoS multicast routing and channel assignment in multiradio multichannel wireless mesh networks using intelligent computational methods

    Get PDF
    Copyright @ 2010 Elsevier B.V. All rights reserved.In this paper, the quality of service multicast routing and channel assignment (QoS-MRCA) problem is investigated. It is proved to be a NP-hard problem. Previous work separates the multicast tree construction from the channel assignment. Therefore they bear severe drawback, that is, channel assignment cannot work well with the determined multicast tree. In this paper, we integrate them together and solve it by intelligent computational methods. First, we develop a unified framework which consists of the problem formulation, the solution representation, the fitness function, and the channel assignment algorithm. Then, we propose three separate algorithms based on three representative intelligent computational methods (i.e., genetic algorithm, simulated annealing, and tabu search). These three algorithms aim to search minimum-interference multicast trees which also satisfy the end-to-end delay constraint and optimize the usage of the scarce radio network resource in wireless mesh networks. To achieve this goal, the optimization techniques based on state of the art genetic algorithm and the techniques to control the annealing process and the tabu search procedure are well developed separately. Simulation results show that the proposed three intelligent computational methods based multicast algorithms all achieve better performance in terms of both the total channel conflict and the tree cost than those comparative references.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1
    • 

    corecore