278,436 research outputs found

    Deep Learning Based on Orthogonal Approximate Message Passing for CP-Free OFDM

    Full text link
    Channel estimation and signal detection are very challenging for an orthogonal frequency division multiplexing (OFDM) system without cyclic prefix (CP). In this article, deep learning based on orthogonal approximate message passing (DL-OAMP) is used to address these problems. The DL-OAMP receiver includes a channel estimation neural network (CE-Net) and a signal detection neural network based on OAMP, called OAMP-Net. The CE-Net is initialized by the least square channel estimation algorithm and refined by minimum mean-squared error (MMSE) neural network. The OAMP-Net is established by unfolding the iterative OAMP algorithm and adding some trainable parameters to improve the detection performance. The DL-OAMP receiver is with low complexity and can estimate time-varying channels with only a single training. Simulation results demonstrate that the bit-error rate (BER) of the proposed scheme is lower than those of competitive algorithms for high-order modulation.Comment: 5 pages, 4 figures, updated manuscript, International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019). arXiv admin note: substantial text overlap with arXiv:1903.0476

    Deep Learning and Inverse Problems

    Full text link
    Machine Learning (ML) methods and tools have gained great success in many data, signal, image and video processing tasks, such as classification, clustering, object detection, semantic segmentation, language processing, Human-Machine interface, etc. In computer vision, image and video processing, these methods are mainly based on Neural Networks (NN) and in particular Convolutional NN (CNN), and more generally Deep NN. Inverse problems arise anywhere we have indirect measurement. As, in general, those inverse problems are ill-posed, to obtain satisfactory solutions for them needs prior information. Different regularization methods have been proposed, where the problem becomes the optimization of a criterion with a likelihood term and a regularization term. The main difficulty, however, in great dimensional real applications, remains the computational cost. Using NN, and in particular Deep Learning (DL) surrogate models and approximate computation, can become very helpful. In this work, we focus on NN and DL particularly adapted for inverse problems. We consider two cases: First the case where the forward operator is known and used as physics constraint, the second more general data driven DL methods.Comment: arXiv admin note: text overlap with arXiv:2308.1549
    • …
    corecore