1,349 research outputs found

    Acyclic edge-coloring using entropy compression

    Full text link
    An edge-coloring of a graph G is acyclic if it is a proper edge-coloring of G and every cycle contains at least three colors. We prove that every graph with maximum degree Delta has an acyclic edge-coloring with at most 4 Delta - 4 colors, improving the previous bound of 9.62 (Delta - 1). Our bound results from the analysis of a very simple randomised procedure using the so-called entropy compression method. We show that the expected running time of the procedure is O(mn Delta^2 log Delta), where n and m are the number of vertices and edges of G. Such a randomised procedure running in expected polynomial time was only known to exist in the case where at least 16 Delta colors were available. Our aim here is to make a pedagogic tutorial on how to use these ideas to analyse a broad range of graph coloring problems. As an application, also show that every graph with maximum degree Delta has a star coloring with 2 sqrt(2) Delta^{3/2} + Delta colors.Comment: 13 pages, revised versio

    Track Layouts of Graphs

    Get PDF
    A \emph{(k,t)(k,t)-track layout} of a graph GG consists of a (proper) vertex tt-colouring of GG, a total order of each vertex colour class, and a (non-proper) edge kk-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)(k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.Comment: The paper is submitted for publication. Preliminary draft appeared as Technical Report TR-2003-07, School of Computer Science, Carleton University, Ottawa, Canad
    corecore