4,843 research outputs found

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    Finite Size Scaling, Fisher Zeroes and N=4 Super Yang-Mills

    Full text link
    We investigate critical slowing down in the local updating continuous-time Quantum Monte Carlo method by relating the finite size scaling of Fisher Zeroes to the dynamically generated gap, through the scaling of their respective critical exponents. As we comment, the nonlinear sigma model representation derived through the hamiltonian of our lattice spin model can also be used to give a effective treatment of planar anomalous dimensions in N=4 SYM. We present scaling arguments from our FSS analysis to discuss quantum corrections and recent 2-loop results, and further comment on the prospects of extending this approach for calculating higher twist parton distributions.Comment: Lattice 2004(spin), Fermilab, June 21-26, 2004; 3 pages, 4 figure

    The optimal phase of the generalised Poincare dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps

    Full text link
    Several studies have proposed that the shape of the Universe may be a Poincare dodecahedral space (PDS) rather than an infinite, simply connected, flat space. Both models assume a close to flat FLRW metric of about 30% matter density. We study two predictions of the PDS model. (i) For the correct model, the spatial two-point cross-correlation function, \ximc, of temperature fluctuations in the covering space, where the two points in any pair are on different copies of the surface of last scattering (SLS), should be of a similar order of magnitude to the auto-correlation function, \xisc, on a single copy of the SLS. (ii) The optimal orientation and identified circle radius for a "generalised" PDS model of arbitrary twist ϕ\phi, found by maximising \ximc relative to \xisc in the WMAP maps, should yield ϕ{±36deg}\phi \in \{\pm 36\deg\}. We optimise the cross-correlation at scales < 4.0 h^-1 Gpc using a Markov chain Monte Carlo (MCMC) method over orientation, circle size and ϕ\phi. Both predictions were satisfied: (i) an optimal "generalised" PDS solution was found, with a strong cross-correlation between points which would be distant and only weakly correlated according to the simply connected hypothesis, for two different foreground-reduced versions of the WMAP 3-year all-sky map, both with and without the kp2 Galaxy mask: the face centres are (l,b)i=1,6(184d,62d),(305d,44d),(46d,49d),(117d,20d),(176d,4d),(240d,13d)towithin 2d,andtheirantipodes;(ii)thissolutionhastwistϕ=(+39±2.5)d,inagreementwiththePDSmodel.Thechanceofthisoccurringinthesimplyconnectedmodel,assumingauniformdistribution(l,b)_{i=1,6}\approx (184d, 62d), (305d, 44d), (46d, 49d), (117d, 20d), (176d, -4d), (240d, 13d) to within ~2d, and their antipodes; (ii) this solution has twist \phi= (+39 \pm 2.5)d, in agreement with the PDS model. The chance of this occurring in the simply connected model, assuming a uniform distribution \phi \in [0,2\pi]$, is about 6-9%.Comment: 20 pages, 22 figures, accepted in Astronomy & Astrophysics, software available at http://adjani.astro.umk.pl/GPLdownload/dodec/ and MCMCs at http://adjani.astro.umk.pl/GPLdownload/MCM

    Genealogical particle analysis of rare events

    Full text link
    In this paper an original interacting particle system approach is developed for studying Markov chains in rare event regimes. The proposed particle system is theoretically studied through a genealogical tree interpretation of Feynman--Kac path measures. The algorithmic implementation of the particle system is presented. An estimator for the probability of occurrence of a rare event is proposed and its variance is computed, which allows to compare and to optimize different versions of the algorithm. Applications and numerical implementations are discussed. First, we apply the particle system technique to a toy model (a Gaussian random walk), which permits to illustrate the theoretical predictions. Second, we address a physically relevant problem consisting in the estimation of the outage probability due to polarization-mode dispersion in optical fibers.Comment: Published at http://dx.doi.org/10.1214/105051605000000566 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore