3 research outputs found

    An experimental investigation of the natural frequency statistics of a beam with spatially correlated random masses

    No full text
    Experimental investigations into the dynamic response of structures with material or geometrical random fields usually depend upon an initial characterization of this variability, with very little control over the statistics at its early manufacturing stage. This provides the need of a minimal number of samples to generate an ensemble of dynamic responses, making such experimental data scarcely found in the literature. In this work, a cantilever beam with small masses attached along its length according to a given discrete random field has an ensemble of natural frequencies measured for a number of correlation lengths. The results can be used to investigate the effects of the correlation length on the subsequent natural frequency statistics. The experimental results are compared with a wave approximation for flexural waves using a continuous random field for the mass density, in order to approximate the mass distribution. Issues concerning this approximation are discussed. In addition, results are also compared with a simple added mass approximation with assumed modes from a FE solution

    Flexural wave propagation in slowly varying random waveguides using a finite element approach

    No full text
    This work investigates structural wave propagation in waveguides with randomly varying properties along the axis of propagation, specifically when the properties vary slowly enough such that there is negligible backscattering. Wave-based methods are typically applied to homogeneous waveguides but the WKB (after Wentzel, Kramers and Brillouin) approximation can be used to find a suitable generalisation of the wave solution in terms of the change of phase and amplitude, but is restricted to analytical solutions. A wave and finite element (WFE) approach is proposed to extend the applicability of the WKB method to cases where no analytical solution is available. The wavenumber is expressed as a function of the position along the waveguide and a Gauss-Legendre quadrature scheme is used to obtain the phase change while the wave amplitude is calculated using conservation of power. The WFE method is used to evaluate the wavenumbers at each integration point. The flexural vibration example is considered with random field proprieties being expressed by a Karhunen-Loeve expansion. Results are compared to a standard FE approach and to the WKB analytical solution. They show good agreement and require only a few WFE evaluations, providing a suitable framework for spatially correlated randomness in waveguides
    corecore