9 research outputs found

    Analysis of dispersed multiphase flow using fully-resolved direct numerical simulation: Flow physics and modeling

    Get PDF
    Fully resolved simulation of flows with buoyant particles is a challenging problem since buoyant particles are lighter than the surrounding fluid.As a result, the two phases are strongly coupled together.In this work, the virtual force stabilization technique is used to simulate buoyant particle suspensions with high volume fractions.It is concluded that the dimensionless numerical model constant CvC_v in the virtual force technique should increase with volume fraction.The behavior of a single rising particle, two in-line rising particles, and buoyant particle suspensions are studied.In each case, results are compared with experimental works on bubbly flows to highlight the differences and similarities between buoyant particles and bubbles.Finally, the drag coefficient is extracted from simulations of buoyant particle suspensions at different volume fractions, and based on that, a drag correlation is presented.Then velocity fluctuations in the carrier phase and dispersed phase of a dispersed multiphase flow are studied using particle-resolved direct numerical simulation.The simulations correspond to a statistically homogeneous problem with an imposed mean pressure gradient and are presented for a wide range of dispersed phase volume fractions, Reynolds number based on mean slip velocity, and density ratios of the dispersed phase to the carrier phase.The velocity fluctuations in the fluid and dispersed phase at the statistically stationary state are quantified by the turbulent kinetic energy (TKE) and granular temperature, respectively.It is found that the granular temperature increases with decrease in density ratio and then reaches an asymptotic value.The qualitative trend of the behavior is explained by the added mass effect, but the value of the coefficient that yields quantitative agreement is non-physical.It is also shown that the TKE has a similar dependence on the density ratio for all volume fractions studied here other than ฯ•=0.1\phi=0.1.The anomalous behavior for ฯ•=0.1\phi=0.1 is hypothesized to arise from the interaction of particle wakes at higher volume fractions.The study of mixture kinetic energy for different cases indicates that low-density ratio cases are less efficient in extracting energy from mean flow to fluctuations.The ultimate objective of this study is to understand the dynamics of freely evolving particle suspensions over a wide range of particle-to-fluid density ratios.The dynamics of particle suspensions are characterized by the average momentum equation, where the dominant contribution to the average momentum transfer between particles and fluid is the average drag force.In this study, the average drag force is quantified using fully-resolved direct numerical simulation in a canonical problem: a statistically homogeneous suspension where a steady mean slip velocity between the phases is established by an imposed mean pressure gradient.The effects of particle velocity fluctuations, clustering, and mobility of particles are studied separately.It is shown that the competing effects of these factors could decrease, increase, or keep constant the drag of freely evolving suspensions in comparison to fixed beds at different flow conditions.It is also shown that the effects of clustering and particle velocity fluctuations are correlated.Finally, a correlation for interphase drag force in terms of volume fraction, Reynolds number, and density ratio is proposed. Since this drag correlation has been inferred from simulations of particle suspensions, it includes the effect of the motion of the particles. This drag correlation can be used in computational fluid dynamics simulations of particle-laden flows that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior

    ํฐ ์ง„ํญ ์ง„๋™์˜ ์œ ์ฒด-๊ตฌ์กฐ๋ฌผ ์ƒํ˜ธ ์ž‘์šฉ๊ณผ ์ˆ˜๋™ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2017. 8. ์ตœํ•ด์ฒœ.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์ฒด์™€ ์œ ์ฒด์˜ ์ €๋ฐ€๋„ ๋น„(ฯ)์—์„œ ์œ ์ฒด-๊ตฌ์กฐ๋ฌผ ์ƒํ˜ธ์ž‘์šฉ์„ ์œ„ํ•œ ์•ฝํ•œ ๊ฒฐํ•ฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ๋‹ค์Œ์˜ ๊ตฌ์กฐ๋ฌผ ์ฃผ์œ„ ์œ ๋™์— ๋Œ€ํ•œ ๋น„์ •์ƒ 3์ฐจ์› ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ตฌ์กฐ๋ฌผ์€ ํƒ„์„ฑ ๊ฐ•์ฒด ์›ํ˜• ์‹ค๋ฆฐ๋”์™€ ๋‚˜์„ ํ˜• ๋น„ํ‹€๋ฆผ ํƒ€์›(HTE) ์‹ค๋ฆฐ๋”, ์ง์„ ํ˜• ์ „๋‹จ๋ฅ˜์—์„œ์˜ ์œ ์—ฐ ์›ํ˜• ๋ฐ HTE ์‹ค๋ฆฐ๋”, ๊ทธ๋ฆฌ๊ณ  ํƒ€์ฝ”๋งˆ ๋ธŒ๋ฆฟ์ง€์ด๋‹ค. ์•ฝํ•œ ๊ฒฐํ•ฉ๋ฒ•์—์„œ ์ •ํ™•ํ•˜๊ณ  ์•ˆ์ •์ ์ธ ํ•ด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ๊ฐ ์‹œ๊ฐ„ ๋‹จ๊ณ„์—์„œ ์œ ์ฒด-๊ตฌ์กฐ๋ฌผ ๊ฒฝ๊ณ„์˜ ์ž„์‹œ ์†๋„์™€ ์œ„์น˜๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ์˜ˆ์ธก๊ธฐ(๋ช…์‹œ์  2๋‹จ๊ณ„ ๋ฐฉ๋ฒ• ๋ฐ ์ž„์‹œ์  ์˜ค์ผ๋Ÿฌ ๋ฐฉ๋ฒ•)๋ฅผ ๋„์ž…ํ•œ๋‹ค. ๋น„์••์ถ•์„ฑ ๋‚˜๋น„์—-์Šคํ† ํฌ์Šค ๋ฐฉ์ •์‹์€ ์œ ์ฒด-๊ตฌ์กฐ๋ฌผ ๊ฒฝ๊ณ„๋ฉด์—์„œ์˜ ์ž„์‹œ ์†๋„ ๋ฐ ์œ„์น˜์™€ ์—‡๊ฐˆ๋ฆผ ๊ฒฉ์ž์—์„œ ๊ฐ€์ƒ ๊ฒฝ๊ณ„ ๋ฐฉ๋ฒ• ๋ฐ ์œ ํ•œ ์ฒด์  ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์˜ค์ผ๋Ÿฌ ์ขŒํ‘œ๋กœ ํ’€๋ฆฐ๋‹ค. ์œ ์ฒด ๋ฐ ๊ตฌ์กฐ๋ฌผ์— ๋Œ€ํ•œ ๊ฐ ์ง€๋ฐฐ๋ฐฉ์ •์‹์€ 2์ฐจ ์‹œ๊ฐ„ ์ ๋ถ„๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ž„์‹œ์ ์œผ๋กœ ํ•ด๊ฒฐ๋œ๋‹ค. ์ „๋ฐ˜์ ์ธ 2์ฐจ ์‹œ๊ฐ„ ์ •ํ™•๋„๋Š” ๋‚ฎ์€ ์ •ํ™•๋„์˜ ์˜ˆ์ธก๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋”๋ผ๋„ ๋ณด์กด๋œ๋‹ค. ๋˜ํ•œ ์„ ํ˜• ์•ˆ์ •์„ฑ ๋ถ„์„์€ ๊ฐ€์žฅ ๋‚ฎ์€ ๋ฐ€๋„ ๋น„๋กœ ์•ˆ์ •์ ์ธ ํ•ด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ตœ์ ์˜ ๋ช…์‹œ์  2๋‹จ๊ณ„ ๋ฐฉ๋ฒ•์„ ์ฐพ๊ธฐ ์œ„ํ•œ ์ด์ƒ์ ์ธ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ํ˜„์žฌ์˜ ์•ฝํ•œ ๊ฒฐํ•ฉ๋ฒ•์œผ๋กœ 3๊ฐ€์ง€ ๋‹ค๋ฅธ ์œ ์ฒด-๊ตฌ์กฐ๋ฌผ ์ƒํ˜ธ ์ž‘์šฉ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ•˜์˜€๋‹ค. ํƒ„์„ฑ ๊ฐ•์ฒด ์›ํ˜• ์‹ค๋ฆฐ๋”, ๊ณ ์ •๋œ ์›ํ˜• ์‹ค๋ฆฐ๋”์˜ ๋ฒ ์ด์Šค์— ๋ถ€์ฐฉ๋œ ํƒ„์„ฑ ๋น”, ๊ทธ๋ฆฌ๊ณ  ์œ ์—ฐ ํ”Œ๋ ˆ์ดํŠธ(ฯ = 0.678) ์ฃผ์œ„ ์œ ๋™์ด๋‹ค. ์•ˆ์ •๋œ ํ•ด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ตœ์ € ๋ฐ€๋„ ๋น„๋Š” ์ฒ˜์Œ ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ์— ๋Œ€ํ•ด ํƒ์ƒ‰๋˜๋ฉฐ 1๋ณด๋‹ค ํ›จ์”ฌ ๋‚ฎ๋‹ค(๊ฐ๊ฐ ฯmin = 0.21๊ณผ 0.31). ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ๊ฐ•ํ•œ ๊ฒฐํ•ฉ๋ฒ•๊ณผ ์ด์ „์˜ ์ˆ˜์น˜ ๋ฐ ์‹คํ—˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์™€ ์ž˜ ์ผ์น˜ํ•˜๋ฉฐ ํ˜„์žฌ์˜ ์•ฝํ•œ ๊ฒฐํ•ฉ๋ฒ•์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํƒ„์„ฑ ๊ฐ•์ฒด ์›ํ˜• ์‹ค๋ฆฐ๋” ์ฃผ์œ„ ์œ ๋™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ 2์˜ ์งˆ๋Ÿ‰๋น„, 6์˜ ํ™˜์‚ฐ ์†๋„, 0์˜ ๊ฐ์‡ ๋น„ ๋ฐ 4200์˜ ๋ ˆ์ด๋†€์ฆˆ ์ˆ˜๋ฅผ ๊ฐ–๋Š”๋‹ค. 1.19D์˜ ํšก ๋ฐฉํ–ฅ ๋ณ€์œ„ ์ง„ํญ์„ ๊ฐ–๋Š” ์ง„๋™์€ ์›ํ˜• ์‹ค๋ฆฐ๋”์˜ ํšก ๋ฐฉํ–ฅ ๋‘ ๋ฉด์—์„œ์˜ ํฐ ์••๋ ฅ์ฐจ์— ์˜ํ•ด ์œ ๋„๋œ๋‹ค. ์—ฌ๊ธฐ์„œ D๋Š” ์›ํ˜• ์‹ค๋ฆฐ๋”์˜ ์ง๊ฒฝ ๋˜๋Š” HTE ์‹ค๋ฆฐ๋”์˜ ์žฅ์ถ•๊ณผ ๋‹จ์ถ•์˜ ๊ธธ์ด ๊ณฑ์˜ ์ œ๊ณฑ๊ทผ์ด๋‹ค. ์ „๋ฐฉ ๋ฐ ํ›„๋ฐฉ์—์„œ ๋ฐœ์ƒ๋œ ์ „๋‹จ์ธต์—์„œ ์ƒ์„ฑ๋œ ์‹œ์ž‘ ์™€๋ฅ˜์— ์˜ํ•ด ์œ ๋„๋œ ์œ ๋™์ด ์›ํ˜• ์‹ค๋ฆฐ๋”์˜ ํšก๋ฐฉํ–ฅ ๋ฉด์— ์ถฉ๋Œํ•จ์œผ๋กœ ์ธํ•ด ์‹ค๋ฆฐ๋”์˜ ํšก ๋ฐฉํ–ฅ ์ด๋™๊ณผ ๋ฐ˜๋Œ€๋˜๋Š” ๋ฉด์—์„œ ์••๋ ฅ์ด ๋†’๊ณ  ๋‹ค๋ฅธ ๋ฉด์€ ์œ ๋™ ๊ฐ€์†๊ณผ ๋ฐ•๋ฆฌ ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์••๋ ฅ์ด ๋‚ฎ๋‹ค. ํ•œํŽธ, ํฐ ์ง„ํญ ์ง„๋™์„ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด ํƒ„์„ฑ ๊ฐ•์ฒด HTE ์‹ค๋ฆฐ๋”์˜ ํŒŒ์žฅ(ฮปH) ๋ฐ ์ข…ํšก๋น„(ARH)์— ๋Œ€ํ•œ ๋งค๊ฐœ ๋ณ€์ˆ˜ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋œ๋‹ค. ARH = 2.6 ๋ฐ ฮปH = 10D์„ ๊ฐ€์ง€๋Š” ํƒ„์„ฑ ๊ฐ•์ฒด HTE ์‹ค๋ฆฐ๋”์˜ ๊ฒฝ์šฐ ์œ ๋™์— ์˜ํ•œ ์ง„๋™์ด ์™„์ „ํžˆ ์–ต์ œ๋˜๊ณ  ํ‰๊ท  ํ•ญ๋ ฅ ๊ณ„์ˆ˜๋Š” ํƒ„์„ฑ ๊ฐ•์ฒด ์›ํ˜• ์‹ค๋ฆฐ๋”์— ๋น„ํ•ด ํ˜„์ €ํžˆ ๊ฐ์†Œํ•˜์ง€๋งŒ ๊ณ ์ • ์›ํ˜• ์‹ค๋ฆฐ๋” ๋ณด๋‹ค๋Š” ์•ฝ๊ฐ„ ๋” ํฌ๋‹ค. ์œ ์—ฐํ•œ ์›ํ˜• ์‹ค๋ฆฐ๋” ์ฃผ์œ„ ์œ ๋™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ 7.64์˜ ์งˆ๋Ÿ‰๋น„, 4.55์˜ ์ธ์žฅ ๊ณ„์ˆ˜, 9.09์˜ ๊ตฝํž˜ ๊ณ„์ˆ˜, 3.67์˜ ์ตœ์†Œ ์†๋„์— ๋Œ€ํ•œ ์ตœ๋Œ€ ์†๋„์˜ ๋น„, 200์˜ ์ง๊ฒฝ์— ๋Œ€ํ•œ ๊ธธ์ด์˜ ๋น„, ์„ ํ˜• ์ „๋‹จ๋ฅ˜ ์œ ์ž…์—์„œ์˜ ์ตœ๋Œ€ ์†๋„์— ๊ธฐ๋ฐ˜ํ•œ ๋ ˆ์ด๋†€์ฆˆ ์ˆ˜ 330์„ ๊ฐ–๋Š”๋‹ค. ๋ฝ์ธ ํ˜„์ƒ์€ ๊ณ ์† ์˜์—ญ์—์„œ 0.148, 0.162 ๋ฐ 0.174์˜ ์„ธ ๊ฐ€์ง€ ์ฃผํŒŒ์ˆ˜์— ๋Œ€ํ•ด ๋ฐœ์ƒํ•˜๋ฉฐ, ์ด๋Š” ๋‹ค์ค‘ ๋ชจ๋“œ ์‘๋‹ต์„ ์œ ๋„ํ•˜๊ณ  ๊ณ ์† ์˜์—ญ์—์„œ ์ €์† ์˜์—ญ์œผ๋กœ ์ „ํŒŒํ•˜๋Š” ์ง„ํ–‰ํŒŒ๋ฅผ ์œ ๋„ํ•œ๋‹ค. ํšก ๋ฐฉํ–ฅ ๋ณ€์œ„ ์ง„ํญ์€ 1D๋ณด๋‹ค ์ž‘์œผ๋ฉฐ ์ •์ƒํŒŒ์™€ ์ง„ํ–‰ํŒŒ๊ฐ€ ๊ด€์ฐฐ๋œ๋‹ค. ํ›„๋ฅ˜์—์„œ๋Š” ์ฃผ๊ธฐ ๋‹น 2๊ฐœ์˜ ๋‹จ์ผ ์™€๋ฅ˜๊ฐ€ ์ƒ์„ฑ๋œ๋‹ค(2S ๋ชจ๋“œ). ํ•œํŽธ, ์œ ์—ฐํ•œ ์›ํ˜• ์‹ค๋ฆฐ๋” ์ฃผ์œ„ ์œ ๋™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ 2.55์˜ ์งˆ๋Ÿ‰๋น„, 5์˜ ์ธ์žฅ ๊ณ„์ˆ˜, 10์˜ ๊ตฝํž˜ ๊ณ„์ˆ˜, 9์˜ ์ตœ์†Œ ์†๋„์— ๋Œ€ํ•œ ์ตœ๋Œ€ ์†๋„์˜ ๋น„, ์„ ํ˜• ์ „๋‹จ๋ฅ˜์—์„œ์˜ ์ตœ๋Œ€ ์†๋„์— ๊ธฐ๋ฐ˜ํ•œ ๋ ˆ์ด๋†€์ฆˆ ์ˆ˜ 4000์„ ๊ฐ–๋Š”๋‹ค. ์œ ์—ฐํ•œ ์›ํ˜• ์‹ค๋ฆฐ๋”๋Š” ๊ธธ์ด์˜ 2๋ฐฐ ํŒŒ์žฅ์œผ๋กœ ์ง„๋™ํ•œ๋‹ค(mode 1). ํšก๋ฐฉํ–ฅ ๋ณ€์œ„ ์ง„ํญ์€ 2D๋ณด๋‹ค ํฌ๊ณ  ์œ ๋™ ๋ฐฉํ–ฅ ๋ณ€์œ„๋Š” ์œ ์—ฐํ•œ ์›ํ˜•์‹ค๋ฆฐ๋” ์ค‘๊ฐ„ ๋ถ€๊ทผ์—์„œ ์‹ฌํ•˜๊ฒŒ ๋ณ€๋™ํ•œ๋‹ค. ์ „๋‹จ์ธต์œผ๋กœ๋ถ€ํ„ฐ ๊ฐ•ํ•œ ์‹œ์ž‘ ์™€๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์‹ค๋ฆฐ๋”์˜ ์ด๋™ ๋ฐฉํ–ฅ์˜ ๋ฐ˜๋Œ€์ชฝ ๊ทผ์ฒ˜์— ์œ„์น˜ํ•œ๋‹ค. ๋‹ค์ค‘ ๋ชจ๋“œ ๋ฐ ๋‹จ์ผ ๋ชจ๋“œ ์‘๋‹ต์˜ ๊ฒฝ์šฐ ๋ชจ๋‘, ARH = 2.6 ๋ฐ ฮปH = 10D์ธ ์œ ์—ฐํ•œ HTE ์‹ค๋ฆฐ๋”๋Š” ์œ ๋™์œผ๋กœ ์ธํ•œ ์ง„๋™์„ ์™„์ „ํžˆ ์–ต์ œํ•˜๊ณ  ํ๋ฆ„ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์ฒ˜์ง์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ํƒ€์ฝ”๋งˆ ๋ธŒ๋ฆฟ์ง€ ์ฃผ์œ„ ์œ ๋™์€ ๊ฐ‘ํŒ ๋†’์ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ ˆ์ด๋†€์ฆˆ 300์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๋œ๋‹ค. ํƒ€์ฝ”๋งˆ ๋ธŒ๋ฆฟ์ง€๊ฐ€ ๊ธธ์ด์˜ 1๋ฐฐ ํŒŒ์žฅ์œผ๋กœ ๋น„ํ‹€๋ฆผ ์ง„๋™ํ•  ๋•Œ ํƒ€์ฝ”๋งˆ ๋ธŒ๋ฆฟ์ง€ ๋’ค์˜ ์™€๋ฅ˜ ํ˜๋ฆผ์€ ์ŠคํŒฌ ๋ฐฉํ–ฅ ๋ฐ ํšก ๋ฐฉํ–ฅ์„ ๋”ฐ๋ผ ๋ฒˆ๊ฐˆ์•„ ์ƒ์„ฑ๋œ๋‹ค. ํƒ€์ฝ”๋งˆ ๋ธŒ๋ฆฟ์ง€์˜ ๋น„ํ‹€๋ฆผ ์ง„๋™์€ ์„ ๋‹จ ์†Œ์šฉ๋Œ์ด์™€ ์ƒํ˜ธ ์ž‘์šฉํ•œ๋‹ค. ๊ฐ‘ํŒ ๋‹จ๋ฉด์˜ ๋” ๋†’์€ ๋ฐ›์Œ๊ฐ์œผ๋กœ ์ธํ•ด ์„ ๋‹จ ์†Œ์šฉ๋Œ์ด๊ฐ€ ๊ฐ•ํ•ด์ง€๊ณ  ์„ ๋‹จ ์†Œ์šฉ๋Œ์ด๊ฐ€ ๊ฐ•ํ•ด์ง€๋ฉด ๋ฐํฌ์—์„œ ๋” ๋†’์€ ๋ชจ๋ฉ˜ํŠธ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋น„ํ‹€๋ฆผ ์ง„๋™์„ ๊ฒช๊ณ  ์žˆ๋Š” ํƒ€์ฝ”๋งˆ ๋ธŒ๋ฆฟ์ง€ ํ›„๋ฅ˜์—์„œ์˜ ์™€๋ฅ˜ ๋ฐฉ์ถœ ์ฃผํŒŒ์ˆ˜๋Š” ์ •์ง€๋œ ํƒ€์ฝ”๋งˆ ๋ธŒ๋ฆฟ์ง€ ํ›„๋ฅ˜์—์„œ์˜ ์™€๋ฅ˜ ๋ฐฉ์ถœ ์ฃผํŒŒ์ˆ˜ ๋ณด๋‹ค๋Š” ํ›จ์”ฌ ๋‚ฎ์€ ๋ฐ˜๋ฉด ์ผ€์ด๋ธ”์— ์˜ํ•ด ์œ ๋„๋œ ๋น„ํ‹€๋ฆผ ๊ณ ์œ  ์ฃผํŒŒ์ˆ˜์™€๋Š” ์ž˜ ์ผ์น˜ํ•œ๋‹ค.In the present study, we present a weak coupling approach for fluid-structure interaction with low density ratio (ฯ) of solid to fluid and conduct unsteady three-dimensional simulations of flows around structures: elastically mounted rigid circular cylinder and helically twisted elliptic (HTE) cylinders in the super-upper branch, flexible circular and HTE cylinders in a linearly sheared flow, and the Tacoma Narrows Bridge. For accurate and stable solutions in a weak coupling approach, we introduce predictors, an explicit two-step method and the implicit Euler method, to obtain provisional velocity and position of fluid-structure interface at each time step, respectively. The incompressible Navier-Stokes equations, together with these provisional velocity and position at the fluid-structure interface, are solved in an Eulerian coordinate using an immersed-boundary finite-volume method on a staggered mesh. The dynamic equation of an elastic solid-body motion, together with the hydrodynamic force at the provisional position of the interface, is solved in a Lagrangian coordinate using a finite element method. Each governing equation for fluid and structure is implicitly solved using second-order time integrators. The overall second-order temporal accuracy is preserved even with the use of lower-order predictors. A linear stability analysis is also conducted for an ideal case to find the optimal explicit two-step method that provides stable solutions down to the lowest density ratio. With the present weak coupling, three different fluid-structure interaction problems were simulated: flows around an elastically mounted rigid circular cylinder, an elastic beam attached to the base of a stationary circular cylinder, and a flexible plate (ฯ = 0.678), respectively. The lowest density ratios providing stable solutions are searched for the first two problems and they are much lower than 1 (ฯmin = 0.21 and 0.31, respectively). The simulation results agree well with those from strong coupling suggested here and also from previous numerical and experimental studies, indicating the efficiency and accuracy of the present weak coupling. Flow around an elastically mounted rigid circular cylinder is simulated at the mass ratio of 2, the reduced velocity of 6, the damping ratio of 0, and the Reynolds number of 4200. Vibration with the transverse displacement amplitude of 1.19D is induced by large pressure difference between the upper and lower sides, where D is the diameter of a circular cylinder or square root of the product of the lengths of the major and minor axes of the HTE cylinder: pressure is high on the opposite side to the moving direction of the cylinder due to the impingement of flow induced by starting vortices in the shear layers evolved from the front and rear sides but low on the other side due to the flow acceleration and separation delay. To suppress large amplitude vibration, a parametric study is conducted for the wavelength (ฮปH) and apsect ratio (ARH) of an elastically mounted rigid HTE cylinder. For the elastically mounted rigid HTE cylinder with ARH = 2.6 and ฮปH = 10D, flow-induced vibration is completely suppressed, and the mean drag coefficient is significantly decreased compared to that for an elastically mounted rigid circular cylinder but slightly higher than for a stationary circular cylinder. Flow around a flexible circular cylinder is simulated at the mass ratio of 7.64, tension coefficient of 4.55, bending coefficient of 9.09, the ratio of the maximum to minimum velocity of 3.67, the ratio of length to diameter of 200, and the Reynolds number of 330 based on the maximum velocity in a linearly sheared inflow. Lock-in occurs for three frequencies of 0.148, 0.162, and 0.174 in the high velocity region, which induces multi-mode response and traveling waves propagating from the high velocity region to low velocity region. The transverse displacement amplitude is less than 1D and standing waves as well as traveling waves are observed. In the wake, two single vortices shed per cycle (2S mode). Flow around a flexible circular cylinder is simulated at the mass ratio of 2.55, tension coefficient of 9, the Reynolds number of 4000 based on the maximum velocity in a linearly sheared inflow. A flexible circular cylinder vibrates with the wavelength two times the spanwise domain size (mode 1). The transverse displacement amplitude is greater than 2D and streamwise displacement severely fluctuates near the middle of a flexible circular cylinder. Strong starting vortices are generated from the shear layers and located near the side opposite to the moving direction of the cylinder. For both cases of multi-mode and single-mode responses, the flexible HTE cylinder with ARH = 2.6 and ฮปH = 10D completely suppresses flow-induced vibration and reduces the deflection in the streamwise direction. Flow around the Tacoma Narrows Bridge is simulated at the Reynolds number of 300 based on the height of the deck. Vortex shedding behind the Tacoma Narrows Bridge is alternatively generated along the spanwise and transverse directions when the Tacoma Narrows Bridge torsionally vibrates with the wavelength of LT, where LT is the length of the Tacoma Narrows Bridge. Torsional vibration of the Tacoma Narrows Bridge interacts with leading edge vortices: higher angle of attack of the cross section of the deck induces a stronger leading edge vortex, and again stronger leading edge vortices generate higher moment on the deck. The vortex shedding frequency matches well with the torsional natural frequency induced by the cables although the matched frequency is much lower than the frequency of vortex shedding for flow around a stationary Tacoma Narrows Bridge because a leading edge vortex stays longer near the leading edge as the angle of attack of the cross section of the deck is higher.1 Introduction 1 2 A weak-coupling immersed boundary method for fluid-structure interaction with low density ratio of solid to fluid 4 2.1 Motivations and objectives 4 2.2 Numerical method 8 2.2.1 Weak coupling vs. strong coupling 8 2.2.2 Numerical method for fluid flow 9 2.2.3 Numerical method for the motions of rigid and elastic bodies 11 2.2.4 Predictors for the motion of fluid-solid interface and their numerical stability 13 2.2.5 Strong coupling algorithm 18 2.3 Numerical examples 21 2.3.1 Vortex-induced vibration of a rigid circular cylinder 21 2.3.2 Vortex-induced vibration of an elastic beam 25 2.3.3 Bending of a flexible plate 27 2.4 Summary 31 3 Vortex-induced vibrations of an elastically mounted rigid circular cylinder and flexible circular cylinder, and controls for them 45 3.1 An elastically mounted rigid cylinder in a uniform current 45 3.1.1 Motivations and objectives 45 3.1.2 Computational details 48 3.1.3 Vortex-induced vibration of an elastically mounted rigid circular cylinder at the super-upper branch 50 3.1.4 Flow over the elastically mounted rigid helically twisted elliptic cylinder 53 3.2 A flexible cylinder in a linearly sheared current 57 3.2.1 Motivations and objectives 57 3.2.2 Computational details 59 3.2.3 Multi-mode response of a flexible circular cylinder and its control 61 3.2.4 Single-mode response of a flexible circular cylinder and its control 67 3.3 Summary 69 4 Collapse of the Tacoma Narrows Bridge 106 4.1 Objectives 106 4.2 Computational details 107 4.3 Flow-induced vibration of the Tacoma Narrows Bridge 112 4.4 Summary 115 References 122Docto

    Beurteilung der Gefรคhrdung durch Treibgut bei extremen รœberschwemmungsereignissen

    Get PDF
    Coastal areas are often important to economic, social, and environmental processes throughout the world. With changing climate and growing populations in these areas, coastal communities have become increasingly vulnerable to extreme flooding events, such as tsunami, storm surges, and flash floods. Within this new paradigm, there has been an effort to improve upon current methods of hazard assessment, particularly for tsunami. Recently, the American Society of Civil Engineers (ASCE) released the ASCE 7 Chapter 6 which was the worldโ€™s first standard, written in mandatory language, that addressed tsunami resilient design in a probabilistic manner for several of its prescriptions. While often the focus tends to be on mapping the hazards related to hydraulic loading conditions, post-tsunami field surveys from disaster-stricken coastal communities have also shown the importance of also considering the loads exerted by solid objects entrained within the inundating flows, commonly referred to as debris loading. Limited research has addressed debris hazard assessment in a comprehensive manner. Debris loading can be generally divided into two categories: impact and damming. Debris impact loads are caused by the rapid strike of solid objects against a structure. Debris damming loads are the result of the accumulation of debris at the face of or around a structure, causing thus an obstruction to the flow. The primary difference between these loads is the time period over which they act. The rapid loading due to debris impacts requires structural properties be considered in assessing the associated loads whereas debris damming loads are generally considered in a quasi-static manner. In assessing the hazard associated with both impact and damming loading conditions, methodologies must be developed to consider the likelihood of the load occurring and the magnitude of that load. The primary objective of this thesis was to develop a probabilistic framework for assessing debris hazards in extreme coastal flooding events. To achieve this objective, the components of the framework were split into three general categories: debris transport, debris damming, and debris impact. Several physical experimental studies were performed to address each of these components, representing the most comprehensive assessment of debris hazards in extreme flooding events to date.Kรผstengebiete auf der ganzen Welt sind oftmals wichtig fรผr wirtschaftliche, soziale und รถkologische Prozesse. Aufgrund des sich รคndernden Klimas und der wachsenden Bevรถlkerung in diesen Gebieten sind Kรผstengemeinden zunehmend anfรคllig fรผr extreme รœberschwemmungen durch Tsunami, Sturmfluten und Sturzfluten. Innerhalb dieses neuen Paradigmas wurden Anstrengungen unternommen, um die derzeitigen Methoden zur Gefรคhrdungsbeurteilung, insbesondere fรผr Tsunami, zu verbessern. Die American Society of Civil Engineers (ASCE) verรถffentlichte das ASCE 7 Chapter 6, den weltweit ersten verbindlichen Standard, der sich in mehreren seiner Vorschriften mit einem probabilistischen Ansatz mit tsunami-bestรคndiger Konstruktion befasst. Wรคhrend der Schwerpunkt hรคufig auf der Erfassung der Gefahren im Zusammenhang mit hydraulischen Belastungszustรคnden liegt, haben Felduntersuchungen in von Tsunami getroffenen Kรผstengebieten gezeigt, dass es wichtig ist, auch die Belastungen zu berรผcksichtigen, die von festen Gegenstรคnden ausgehen, die im einstrรถmenden Wasser als Treibgut mitgefรผhrt werden. Umfassende Forschung zur Gefรคhrdungsbeurteilung von Treibgut ist nur begrenzt vorhanden. Die Belastung durch Treibgut kann im Allgemeinen in zwei Kategorien unterteilt werden: Aufprall und Aufstau. Lasten aus dem Aufprall des Treibgutes werden durch das schnelle Auftreffen fester Gegenstรคnde auf eine Struktur verursacht. Lasten aus dem Aufstauen sind das Ergebnis der Akkumulation von Treibgut an der Oberflรคche oder um eine Struktur herum, was zu einer Behinderung der Strรถmung fรผhrt. Der Hauptunterschied zwischen diesen Lasten ist der Zeitraum, รผber den sie wirken. Die schnelle Belastung durch den Aufprall von Treibgut erfordert, dass bei der Beurteilung der damit verbundenen Belastungen strukturelle Eigenschaften berรผcksichtigt werden, wohingegen Lasten aus dem Aufstauen von Treibgut im Allgemeinen quasi-statisch berรผcksichtigt werden. Fรผr die Bewertung der Gefรคhrdung, die sowohl mit dem Aufprall als auch mit dem Aufstauen verbunden ist, mรผssen Methoden entwickelt werden, um die Wahrscheinlichkeit des Auftretens der Last und die GrรถรŸe dieser Last zu berรผcksichtigen. Das Hauptziel der Dissertation war die Entwicklung eines probabilistischen Ansatzes zur Bewertung der Gefรคhrdung durch Treibgut bei extremen รœberflutungsereignissen an der Kรผste. Um dieses Ziel zu erreichen, wurden die Komponenten des Rahmens in drei allgemeine Kategorien unterteilt: Transport, Aufstau und Aufprall von Treibgut. Um jede dieser Komponenten zu untersuchen, wurden mehrere physikalisch-experimentelle Studien durchgefรผhrt, die die bislang umfassendste Beurteilung der Gefรคhrdung durch Treibgut bei extremen รœberschwemmungen darstellen
    corecore