2 research outputs found

    Semi-supervised structured output prediction by local linear regression and sub-gradient descent

    Full text link
    We propose a novel semi-supervised structured output prediction method based on local linear regression in this paper. The existing semi-supervise structured output prediction methods learn a global predictor for all the data points in a data set, which ignores the differences of local distributions of the data set, and the effects to the structured output prediction. To solve this problem, we propose to learn the missing structured outputs and local predictors for neighborhoods of different data points jointly. Using the local linear regression strategy, in the neighborhood of each data point, we propose to learn a local linear predictor by minimizing both the complexity of the predictor and the upper bound of the structured prediction loss. The minimization problem is solved by sub-gradient descent algorithms. We conduct experiments over two benchmark data sets, and the results show the advantages of the proposed method.Comment: arXiv admin note: substantial text overlap with arXiv:1604.0301

    Optimizing Top Precision Performance Measure of Content-Based Image Retrieval by Learning Similarity Function

    Full text link
    In this paper we study the problem of content-based image retrieval. In this problem, the most popular performance measure is the top precision measure, and the most important component of a retrieval system is the similarity function used to compare a query image against a database image. However, up to now, there is no existing similarity learning method proposed to optimize the top precision measure. To fill this gap, in this paper, we propose a novel similarity learning method to maximize the top precision measure. We model this problem as a minimization problem with an objective function as the combination of the losses of the relevant images ranked behind the top-ranked irrelevant image, and the squared Frobenius norm of the similarity function parameter. This minimization problem is solved as a quadratic programming problem. The experiments over two benchmark data sets show the advantages of the proposed method over other similarity learning methods when the top precision is used as the performance measure.Comment: Pattern Recognition (ICPR), 2016 23st International Conference o
    corecore