127 research outputs found

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    The power system and microgrid protection-a review

    Get PDF
    In recent years, power grid infrastructures have been changing from a centralized power generation model to a paradigm where the generation capability is spread over an increasing number of small power stations relying on renewable energy sources. A microgrid is a local network including renewable and non-renewable energy sources as well as distributed loads. Microgrids can be operated in both grid-connected and islanded modes to fill the gap between the significant increase in demand and storage of electricity and transmission issues. Power electronics play an important role in microgrids due to the penetration of renewable energy sources. While microgrids have many benefits for power systems, they cause many challenges, especially in protection systems. This paper presents a comprehensive review of protection systems with the penetration of microgrids in the distribution network. The expansion of a microgrid affects the coordination and protection by a change in the current direction in the distribution network. Various solutions have been suggested in the literature to resolve the microgrid protection issues. The conventional coordination of the protection system is based on the time delays between relays as the primary and backup protection. The system protection scheme has to be changed in the presence of a microgrid, so several protection schemes have been proposed to improve the protection system. Microgrids are classified into different types based on the DC/AC system, communication infrastructure, rotating synchronous machine or inverter-based distributed generation (DG), etc. Finally, we discuss the trend of future protection schemes and compare the conventional power systems

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation

    Fault Direction Estimation for DFIG Integrated Distribution System

    Get PDF
    In Recent years, Distributed energy sources such as wind generators, PV generators, fuel cells have become more attractive to integrate in power system at distribution level because of environmental issues and to replace the fossil fuels which are decreasing day by day. The distributed generation is expected to play a major role in future power systems. The solar and wind energy forms are the two main formsof the renewable energy resources. But, the presence of renewable energy resources will change the traditional distribution system in terms of short circuit power, fault current level and the characteristics of fault currents. These will disturb already existing protection system and cause the entire system to become active. The impact will be majorly on short circuit currents, protection and control

    Progress on protection strategies to mitigate the impact of renewable distributed generation on distribution systems

    Get PDF
    The benefits of distributed generation (DG) based on renewable energy sources leads to its high integration in the distribution network (DN). Despite its well-known benefits, mainly in improving the distribution system reliability and security, there are challenges encountered from a protection system perspective. Traditionally, the design and operation of the protection system are based on a unidirectional power flow in the distribution network. However, the integration of distributed generation causes multidirectional power flows in the system. Therefore, the existing protection systems require some improvement or modification to address this new feature. Various protection strategies for distribution system have been proposed so that the benefits of distributed generation can be fully utilized. This paper reviews the current progress in protection strategies to mitigate the impact of distributed generation in the distribution network. In general, the reviewed strategies in this paper are divided into: (1) conventional protection systems and (2) modifications of the protection systems. A comparative study is presented in terms of the respective benefits, shortcomings and implementation cost. Future directions for research in this area are also presented

    Sag effects on protection system in distributed generation grids

    Get PDF
    Distributed Generators (DGs) are sensible to voltage sags, so the protection devices must trip fast to disconnect the faulted part of the grid. The DG disconnection will not be desirable in the near future with a large penetration, so it will be necessary to lay down new requirements that should be based on avoiding unnecessary disconnections. Therefore, to prevent unnecessary tripping when inverter-based DGs are connected to the Medium Voltage (MV) grid, reliable and effective protection strategies need to be developed, considering the limited short-circuit current contribution of DG. The initial goal of this study is to employ different possible control strategies for a grid-connected inverter according to the Spanish grid code and to analyze the output voltage behavior during symmetrical and unsymmetrical voltage sags. The analytical development of the proposed strategies shows the impacts of the sag on currents, voltages, active and reactive powers. Another goal of this research is to propose a protection strategy based on Artificial Intelligence for a radial or ring distribution system with high DG penetration. The protection strategy is based on three different algorithms to develop a more secure, redundant, and reliable protection system to ensure supply continuity during disturbances in ring and radial grids without compromising system stability. In order to classify, locate and distinguish between permanent or transient faults, new protection algorithms based on artificial intelligence are proposed in this research, allowing network availability improvement disconnecting only the faulted part of the system. This research introduces the innovative use of directional relay based on a communication system and Artificial Neural Network (ANN). The first algorithm, Centralize algorithm (CE), collects the data from all the PDs in the grid in the centralized controller. This algorithm detects the power flow direction and calculates the positive-sequence current of all the PDs in the grid. Significant benefits of this system are that it consolidates the entire systems security into a single device, which can facilitate system security control. However, the CE will not pinpoint the exact location of the fault if there is any loss of information due to poor communication. Therefore, the systems redundancy can be improved by cooperating with a second algorithm, the Zone algorithm (ZO). ZO algorithm is based on zone control using peer-to-peer connectivity in the same line. The faulty line in that zone may be identified by combining the two PDs data on the same line. The most relevant advantage of this algorithm is its flexibility to adapt to any grid modification or disturbance, even if they are just temporary, unlike the CE, which is fixed to the existing grid configuration. The third protection algorithm, Local algorithm (LO), has been proposed without depending on the communication between the PDs; then, the protection system can work properly in case of a total loss of communication. Each PD should be able to detect if the fault is located in the protected line or another line by using only the local information of the PD. According to the type of fault and based on local measurements at each PD of abc voltages and currents, different algorithms will be applied depending on the calculation of the sequence components. The main advantage of this algorithm is the separate decision of each PD, and avoiding communication problems. In case of radial grids, both mechanical breakers and Solid State Relays (SSRs) are used to verify the protection strategies, and in the case of ring grids, mechanical breakers are used, due to the limitations in required voltage difference of SSR. The proposed protection algorithms are compared with conventional protections (Overcurrent and Differential) protections to validate the contribution of the proposed algorithms, especially in reconfigurable smart grids.El objetivo inicial de este estudio es emplear diferentes estrategias de control posibles para un inversor conectado a la red segun el código de red español y analizar el comportamiento de la tensión de salida durante caídas de tensión simétricas y asimétricas. El desarrollo analítico de las estrategias propuestas muestra los impactos de los huecos de tensión en las corrientes, tensiones, potencias activas y reactivas. Otro objetivo de esta investigación es proponer una estrategia de protecclón basada en lnteligencia Artificial para una red del Sistema de Distribución, radial o en anillo, con elevada penetración de Generación Distribuida. La estrategia de protección se basa en tres algoritmos diferentes para desarrollar un sistema de protección más seguro, redundante, y fiable, que asegure la continuidad de suministro durante perturbaciones en redes radiales o en anillo sin comprometer la estabilidad del sistema. Para clasificar, localizar y distinguir entre faltas permanentes o transitorias, se proponen en este trabajo nuevos algoritmos de protección basados en inteligencia artificial, permitiendo la mejora de la disponibilidad de la red, al desconectar sólo la parte del sistema en falta. Esta investigación introduce la innovación del uso del rele direccional basado en un sistema de comunicación y Redes Neuronales Artificiales (ANN). El primer algoritmo, Algoritmo Central (CE), recibe los datos de todos los PDs de la red en un control central. Este algoritmo detecta la dirección de flujo de cargas y calcula la corriente de secuencia positiva de todos los PDs de la red. El entrenamiento de ANNs incluye variaciones en la corriente de cortocircuito y la dirección del flujo de potencia en cada PD. Los beneficios mas significativos de este sistema son que concentra la seguridad total del sistema en un único dispositivo, lo que puede facilitar el control de la seguridad del sistema. Sin embargo, el CE no determinara con precisión la localización exacta de la falta si hay alguna perdida de información debida a una pobre comunicación. Por lo tanto, la redundancia del sistema se puede mejorar cooperando con un segundo algoritmo, el algoritmo de Zona (ZO). El algoritmo ZO se basa en un control de zona usando la conectividad entre dispositivos de protección de una misma línea. La línea en falta en esa zona puede identificarse combinando los datos de los dos PDs de la misma línea.. La ventaja mas relevante de este algoritmo es su flexibilidad para adaptarse a cualquier modificación de la red o perturbación, incluso si sólo son temporales, a diferencia del CE, que se ha adaptado para la configuración de la red existente. El tercer algoritmo de protección, algoritmo Local (LO), ha sido propuesto sin dependencia de la comunicación entre PDs; por lo tanto, el sistema de protección puede operar correctamente en el caso de una pérdida total de comunicación. Cada PD debe poder detectar si la falta esta ubicada en la línea protegida o en otra línea, utilizando sóIo la información local del PD. Según el tipo de falta, y en base a medidas locales en cada PD, de tensiones y corrientes abc, se aplican diferentes algoritmos en función del cálculo de las componentes simétricas. La principal ventaja de este algoritmo es la actuación por separado de cada PD, evitando los problemas de comunicación. En el caso de las redes radiales, se utilizan tanto interruptores mecánicos como réles de estado sóIido (SSR) para verificar las estrategias de protección, y en el caso de las redes en anillo se utilizan interruptores mecánicos, debido a las limitaciones de tensión para su conexión. Los algoritmos de protección propuestos se comparan con protecciones convencionales (Sobrecorriente y Diferencial) para validar la contribución de los algoritmos propuestos, especialmente en redes inteligentes reconfigurables.Postprint (published version

    Review and evaluation of protection issues and solutions for future distribution networks

    Get PDF
    This paper presents a comprehensive review and detailed investigation of the protection issues that may potentially arise due to the proliferation of technologies such as distributed generator (DG) and energy storage in future power distribution networks. A summary and critical evaluation of several potential protection and control solutions (applicable to the generators or the network), which are proposed as addressing one or more of the identified issues, are also presented. The analysis covers both economic and technological viability and feasibility. Finally, a mapping of the identified issues to the most appropriate proposed solutions is presented, along with discussion, analysis and conclusions

    Advanced coordination method for overcurrent protection relays using new hybrid and dynamic tripping characteristics for microgrid

    Get PDF
    Nowadays, the Overcurrent (OC) and Earth Fault (EF) relays coordination problem is one of the most complex and challenging concerns of power protection and network operators due to the high and volatile generation capacity of renewable energy sources in the grid. In this article, a new and dynamic optimal coordination scheme based on a novel hybrid tripping characteristic has been designed and developed for Over Current Relays (OCRs). Considering the impact of renewable energy sources such as the photovoltaic (PV) system on fault characteristic, this work presents and verifies a novel dynamic and hybrid tripping to achieve minimum tripping time and improve the OCR and EF relays coordination performance in terms of security, sensitivity, and selectivity. The proposed dynamic and hybrid scheme will help the OCRs to cover the EF events, and it has been tested under different fault scenarios compared to the literature. The IEEE-9 and IEEE-33 bus systems are implemented in the ETAP package to validate the effectiveness of the proposed hybrid characteristics against traditionally well-established IEC characteristics. Furthermore, the performance of the proposed advance and dynamic protection approach which doesn’t require a communication infrastructure is investigated for a power network with PV plants under different grid operation modes and topology to provide more robustness protection system. The results, as presented using Industrial software (ETAP), showed that the novel dynamic and hybrid tripping scheme improved the speed of the total time tripping different fault scenarios and location by more than 50% and covers all EF events compared to traditional OCR schemes from the literature. The proposed novel dynamic approach has superior performance in detecting high-impedance faults and significantly reducing the tripping time on the IEEE 33 bus network by 47%

    Protection and fault management in active distribution systems

    Get PDF
    The integration of renewable energy resources (RES), as a type of distributed generation (OG) units, is increasing in distribution, systems. This integration, changes the topology, performance and the operational aspects of conventional distribution systems. Protection is one of the main issues that are affected after the high penetration of OGs. Therefore, new protection methods are necessary to guarantee the safety and the reliability of active distribution systems. On the other hand, most RESs are interfaced with the AC grids through power-electronic devices. These interfaces consist of at least one AC/DC conversion units. Hence, using OC distribution systems can contribute to the loss/cost reduction, as some power conversion stages are eliminated. Enhancement in system stability, reduction of power losses, and power quality 1 improvement are other advantages of OC networks. For these reasons as well as the simple integration of electronic loads that are supplied by OC power, the concept of OC distribution systems has attracted a considerable attention over the last years. In 1 fact, MVOC and LVDC grids can be an important part of the future distribution systems. Furthermore, AC and OC system can contribute to construct hybrid AC/DC distribution systems. According to these significant changes in the distribution systems, it is necessary to modify the algorithm of existing protection methods or to propose new protection schemes for both active AC and OC distribution systems. Moreover, in conventional distribution systems, loads are supplied by upstream grid, i.e. transmission lines; therefore, when a fault impacts the upstream grid and the faulty part disconnected by the protection system, all loads connected to distribution systems are disconnected as well. However, in active distribution systems, DGs can support the on-outage zones if the grid equipped with an appropriate fault management system. Therefore, automatic self-healing methods can increase the network reliability and power supply continuity. To provide the self-healing capability, distribution grids should be equipped with adequate algorithms that are able to guarantee the continuous and optima! operation for the isolated section of the grid. In this thesis, differences between protection issues in OC and AC systems are investigated and analyzed. Then, based on this analyze, effective protection and fault management methods are presented far OC distribution systems and microgrids. In the other part of this thesis, a fault management and self-healing algorithm is proposed far active distribution systems. The proposed methods have been evaluated by the hardware-in-the-loop approach using real-time simulators and suitable controllers.La creciente integración de recursos energéticos renovables en el sistema eléctrico ha propiciado el aumento de sistemas de generación distribuida (DG) en los sistemas de distribución. Esta integración,influye en la topologla, el rendimiento y los aspectos operacionales de los sistemas de distribución convencionales. Su impacto sobre los sistemas de protección es uno de los principales problemas que se derivan de la alta penetración de DG. Por ese motivo es preciso diseñar nuevos métodos y sistemas de protección que sean capaces de garantizar la seguridad y la fiabilidad de los sistemas de distribución activos. Por otro lado, la mayoria de sistemas de generación basados en renovables están interconectados con la red de AC a través de convertidores electrónicos de potencia.Estas interfaces consisten en unidades de conversión DC/AC. Por lo tanto, el uso de sistemas de distribución de corriente continua puede contribuir a la reducción de las pérdidas/ costes, ya que algunas etapas de conversión de energía pueden ser eliminadas. La mejora en la estabilidad del sistema, la reducción de las pérdidas de energía,y la mejora la calidad de energía son otras de las ventajas que las redes de corriente continua pueden ofrecer. Por estos motivos, junto con la fácil integración de cargas electrónicas alimentadas en OC, el concepto de sistemas de distribución en OC ha atraido una considerable atención en los últimos anos. De hecho, los sistemas MVDC y las redes LVDC están llamados a ser una parte importante delos sistemas de distribución y transmisión en el futuro. Además, los sistemas de conversión OC y AC pueden contribuir a la construcción de sistemas de distribución de AC I DC híbridos. De acuerdo con estos cambios, significativos en los sistemas de distribución, es necesario modificar el algoritmo y los métodos de protección existentes y proponer nuevos esquemas de protección tanto para los sistemas de distribución en AC como para los de OC. Por otra parte, en los sistemas de distribución convencionales, las cargas son alimentadas por la red aguas arriba, es decir;por las lineas de transmisión; Por lo tanto, cuando una falta se produce en la red aguas arriba la parte defectuosa es desconectada por el sistema de protección, asimismo todas las cargas conectadas a los sistemas de distribución se desconectan también. Sin embargo, en los sistemas de distribución activos, los sistemas DG pueden soportar las zonas de no disponibilidad si la red está equipada con un sistema de gestión de fallos. Por lo tanto, los métodos automáticos de 'self-healing' pueden contribuir a aumentar la continuidad y la fiabilidad del suministro en ta red. Para proporcionar la capacidad de 'self-healing', las redes de distribución deben estar equipadas con algoritmos adecuados que sean capaces de garantizar el funcionamiento continuo y óptimo para la sección aislada de la red. En esta tesis, las diferencias entre tas protecciones para sistemas de OC y CA son investigadas y analizadas. Luego, en base a este analísis, se presentarán los métodos de protección y gestión de fallos adecuados para los sistemas y microrredes de distribución OC. En la otra parte de esta tesis, se propone un algoritmo de gestión de fallos y 'self-healing ' para sistemas de distribución activos. Para validar los métodos propuestos se ha trabajado con plataformas hardware-in­ the-loop avanzado utilizando simuladores en tiempo real y controladores trabajando en base a plataformas de control reales
    corecore