853 research outputs found

    A game theoretic approach to distributed resource allocation for OFDMA-based relaying networks

    Get PDF

    Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay

    Full text link
    In this paper, we investigate the joint spectrum sensing and resource allocation problem to maximize throughput capacity of an OFDM-based cognitive radio link with a cognitive relay. By applying a cognitive relay that uses decode and forward (D&F), we achieve more reliable communications, generating less interference (by needing less transmit power) and more diversity gain. In order to account for imperfections in spectrum sensing, the proposed schemes jointly modify energy detector thresholds and allocates transmit powers to all cognitive radio (CR) subcarriers, while simultaneously assigning subcarrier pairs for secondary users (SU) and the cognitive relay. This problem is cast as a constrained optimization problem with constraints on (1) interference introduced by the SU and the cognitive relay to the PUs; (2) miss-detection and false alarm probabilities and (3) subcarrier pairing for transmission on the SU transmitter and the cognitive relay and (4) minimum Quality of Service (QoS) for each CR subcarrier. We propose one optimal and two sub-optimal schemes all of which are compared to other schemes in the literature. Simulation results show that the proposed schemes achieve significantly higher throughput than other schemes in the literature for different relay situations.Comment: EAI Endorsed Transactions on Wireless Spectrum 14(1): e4 Published 13th Apr 201

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks

    Low Complexity Joint Sub-Carrier Pairing, Allocation and Relay Selection in Cooperative Wireless Networks

    Get PDF
    Multi-carrier cooperative relay-based wireless communication is of particular interest in future wireless networks. In this paper we present resource allocation algorithm in which sub-carrier pairing is of particular interest along with fairness constraint in multi-user networks. An optimization of sub-carrier pair selection is formulated through capacity maximization problem. Sub-carrier pairing is applied in both two-hop Amplify & Forward (AF) and Decode & Forward (DF) cooperative multi-user networks. We develop a less complex centralized scheme for joint Sub-carrier pairing and allocation along with relay selection. The computational complexity of the proposed algorithms has been analyzed and performance is compared with Exhaustive Search Algorithm

    Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission

    Full text link
    In this paper, we study the physical layer security (PLS) problem in the dual hop orthogonal frequency division multiplexing (OFDM) based wireless communication system. First, we consider a single user single relay system and study a joint power optimization problem at the source and relay subject to individual power constraint at the two nodes. The aim is to maximize the end to end secrecy rate with optimal power allocation over different sub-carriers. Later, we consider a more general multi-user multi-relay scenario. Under high SNR approximation for end to end secrecy rate, an optimization problem is formulated to jointly optimize power allocation at the BS, the relay selection, sub-carrier assignment to users and the power loading at each of the relaying node. The target is to maximize the overall security of the system subject to independent power budget limits at each transmitting node and the OFDMA based exclusive sub-carrier allocation constraints. A joint optimization solution is obtained through duality theory. Dual decomposition allows to exploit convex optimization techniques to find the power loading at the source and relay nodes. Further, an optimization for power loading at relaying nodes along with relay selection and sub carrier assignment for the fixed power allocation at the BS is also studied. Lastly, a sub-optimal scheme that explores joint power allocation at all transmitting nodes for the fixed subcarrier allocation and relay assignment is investigated. Finally, simulation results are presented to validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT
    corecore