34,157 research outputs found

    Character-based Neural Embeddings for Tweet Clustering

    Full text link
    In this paper we show how the performance of tweet clustering can be improved by leveraging character-based neural networks. The proposed approach overcomes the limitations related to the vocabulary explosion in the word-based models and allows for the seamless processing of the multilingual content. Our evaluation results and code are available on-line at https://github.com/vendi12/tweet2vec_clusteringComment: Accepted at the SocialNLP 2017 workshop held in conjunction with EACL 2017, April 3, 2017, Valencia, Spai

    ROSA: Robust Salient Object Detection against Adversarial Attacks

    Full text link
    Recently salient object detection has witnessed remarkable improvement owing to the deep convolutional neural networks which can harvest powerful features for images. In particular, state-of-the-art salient object detection methods enjoy high accuracy and efficiency from fully convolutional network (FCN) based frameworks which are trained from end to end and predict pixel-wise labels. However, such framework suffers from adversarial attacks which confuse neural networks via adding quasi-imperceptible noises to input images without changing the ground truth annotated by human subjects. To our knowledge, this paper is the first one that mounts successful adversarial attacks on salient object detection models and verifies that adversarial samples are effective on a wide range of existing methods. Furthermore, this paper proposes a novel end-to-end trainable framework to enhance the robustness for arbitrary FCN-based salient object detection models against adversarial attacks. The proposed framework adopts a novel idea that first introduces some new generic noise to destroy adversarial perturbations, and then learns to predict saliency maps for input images with the introduced noise. Specifically, our proposed method consists of a segment-wise shielding component, which preserves boundaries and destroys delicate adversarial noise patterns and a context-aware restoration component, which refines saliency maps through global contrast modeling. Experimental results suggest that our proposed framework improves the performance significantly for state-of-the-art models on a series of datasets.Comment: To be published in IEEE Transactions on Cybernetic

    Learning Deep Representations for Scene Labeling with Semantic Context Guided Supervision

    Full text link
    Scene labeling is a challenging classification problem where each input image requires a pixel-level prediction map. Recently, deep-learning-based methods have shown their effectiveness on solving this problem. However, we argue that the large intra-class variation provides ambiguous training information and hinders the deep models' ability to learn more discriminative deep feature representations. Unlike existing methods that mainly utilize semantic context for regularizing or smoothing the prediction map, we design novel supervisions from semantic context for learning better deep feature representations. Two types of semantic context, scene names of images and label map statistics of image patches, are exploited to create label hierarchies between the original classes and newly created subclasses as the learning supervisions. Such subclasses show lower intra-class variation, and help CNN detect more meaningful visual patterns and learn more effective deep features. Novel training strategies and network structure that take advantages of such label hierarchies are introduced. Our proposed method is evaluated extensively on four popular datasets, Stanford Background (8 classes), SIFTFlow (33 classes), Barcelona (170 classes) and LM+Sun datasets (232 classes) with 3 different networks structures, and show state-of-the-art performance. The experiments show that our proposed method makes deep models learn more discriminative feature representations without increasing model size or complexity.Comment: 13 page

    Actigraphy-based Sleep/Wake Pattern Detection using Convolutional Neural Networks

    Full text link
    Common medical conditions are often associated with sleep abnormalities. Patients with medical disorders often suffer from poor sleep quality compared to healthy individuals, which in turn may worsen the symptoms of the disorder. Accurate detection of sleep/wake patterns is important in developing personalized digital markers, which can be used for objective measurements and efficient disease management. Big Data technologies and advanced analytics methods hold the promise to revolutionize clinical research processes, enabling the effective blending of digital data into clinical trials. Actigraphy, a non-invasive activity monitoring method is heavily used to detect and evaluate activities and movement disorders, and assess sleep/wake behavior. In order to study the connection between sleep/wake patterns and a cluster headache disorder, activity data was collected using a wearable device in the course of a clinical trial. This study presents two novel modeling schemes that utilize Deep Convolutional Neural Networks (CNN) to identify sleep/wake states. The proposed methods are a sequential CNN, reminiscent of the bi-directional CNN for slot filling, and a Multi-Task Learning (MTL) based model. Furthermore, we expand standard "Sleep" and "Wake" activity states space by adding the "Falling asleep" and "Siesta" states. We show that the proposed methods provide promising results in accurate detection of the expanded sleep/wake states. Finally, we explore the relations between the detected sleep/wake patterns and onset of cluster headache attacks, and present preliminary observations

    Learning Markov Clustering Networks for Scene Text Detection

    Full text link
    A novel framework named Markov Clustering Network (MCN) is proposed for fast and robust scene text detection. MCN predicts instance-level bounding boxes by firstly converting an image into a Stochastic Flow Graph (SFG) and then performing Markov Clustering on this graph. Our method can detect text objects with arbitrary size and orientation without prior knowledge of object size. The stochastic flow graph encode objects' local correlation and semantic information. An object is modeled as strongly connected nodes, which allows flexible bottom-up detection for scale-varying and rotated objects. MCN generates bounding boxes without using Non-Maximum Suppression, and it can be fully parallelized on GPUs. The evaluation on public benchmarks shows that our method outperforms the existing methods by a large margin in detecting multioriented text objects. MCN achieves new state-of-art performance on challenging MSRA-TD500 dataset with precision of 0.88, recall of 0.79 and F-score of 0.83. Also, MCN achieves realtime inference with frame rate of 34 FPS, which is 1.5×1.5\times speedup when compared with the fastest scene text detection algorithm

    Parsing Geometry Using Structure-Aware Shape Templates

    Full text link
    Real-life man-made objects often exhibit strong and easily-identifiable structure, as a direct result of their design or their intended functionality. Structure typically appears in the form of individual parts and their arrangement. Knowing about object structure can be an important cue for object recognition and scene understanding - a key goal for various AR and robotics applications. However, commodity RGB-D sensors used in these scenarios only produce raw, unorganized point clouds, without structural information about the captured scene. Moreover, the generated data is commonly partial and susceptible to artifacts and noise, which makes inferring the structure of scanned objects challenging. In this paper, we organize large shape collections into parameterized shape templates to capture the underlying structure of the objects. The templates allow us to transfer the structural information onto new objects and incomplete scans. We employ a deep neural network that matches the partial scan with one of the shape templates, then match and fit it to complete and detailed models from the collection. This allows us to faithfully label its parts and to guide the reconstruction of the scanned object. We showcase the effectiveness of our method by comparing it to other state-of-the-art approaches

    A test case for application of convolutional neural networks to spatio-temporal climate data: Re-identifying clustered weather patterns

    Full text link
    Convolutional neural networks (CNNs) can potentially provide powerful tools for classifying and identifying patterns in climate and environmental data. However, because of the inherent complexities of such data, which are often spatio-temporal, chaotic, and non-stationary, the CNN algorithms must be designed/evaluated for each specific dataset and application. Yet to start, CNN, a supervised technique, requires a large labeled dataset. Labeling demands (human) expert time, which combined with the limited number of relevant examples in this area, can discourage using CNNs for new problems. To address these challenges, here we (1) Propose an effective auto-labeling strategy based on using an unsupervised clustering algorithm and evaluating the performance of CNNs in re-identifying these clusters; (2) Use this approach to label thousands of daily large-scale weather patterns over North America in the outputs of a fully-coupled climate model and show the capabilities of CNNs in re-identifying the 4 clustered regimes. The deep CNN trained with 10001000 samples or more per cluster has an accuracy of 90%90\% or better. Accuracy scales monotonically but nonlinearly with the size of the training set, e.g. reaching 94%94\% with 30003000 training samples per cluster. Effects of architecture and hyperparameters on the performance of CNNs are examined and discussed

    Universal Spike Classifier

    Full text link
    In electrophysiology, microelectrodes are the primary source for recording neural data of single neurons (single unit activity). These microelectrodes can be implanted individually, or in the form of microelectrodes arrays, consisting of hundreds of electrodes. During recordings, some channels capture the activity of neurons, which is usually contaminated with external artifacts and noise. Another considerable fraction of channels does not record any neural data, but external artifacts and noise. Therefore, an automatic identification and tracking of channels containing neural data is of great significance and can accelerate the process of analysis, e.g. automatic selection of meaningful channels during offline and online spike sorting. Another important aspect is the selection of meaningful channels during online decoding in brain-computer interface applications, where threshold crossing events are usually for feature extraction, even though they do not necessarily correspond to neural events. Here, we propose a novel algorithm based on the newly introduced way of feature vector extraction and a supervised deep learning method: a universal spike classifier (USC). The USC enables us to address both above-raised issues. The USC uses the standard architecture of convolutional neural networks (Conv net). It takes the batch of the waveforms, instead of a single waveform as an input, propagates it through the multilayered structure, and finally classifies it as a channel containing neural spike data or artifacts. We have trained the model of USC on data recorded from single tetraplegic patient with Utah arrays implanted in different brain areas. This trained model was then evaluated without retraining on the data collected from six epileptic patients implanted with depth electrodes and two tetraplegic patients implanted with two Utah arrays, individually.Comment: 21 Pages, 12 Figure

    Behavioral Malware Classification using Convolutional Recurrent Neural Networks

    Full text link
    Behavioral malware detection aims to improve on the performance of static signature-based techniques used by anti-virus systems, which are less effective against modern polymorphic and metamorphic malware. Behavioral malware classification aims to go beyond the detection of malware by also identifying a malware's family according to a naming scheme such as the ones used by anti-virus vendors. Behavioral malware classification techniques use run-time features, such as file system or network activities, to capture the behavioral characteristic of running processes. The increasing volume of malware samples, diversity of malware families, and the variety of naming schemes given to malware samples by anti-virus vendors present challenges to behavioral malware classifiers. We describe a behavioral classifier that uses a Convolutional Recurrent Neural Network and data from Microsoft Windows Prefetch files. We demonstrate the model's improvement on the state-of-the-art using a large dataset of malware families and four major anti-virus vendor naming schemes. The model is effective in classifying malware samples that belong to common and rare malware families and can incrementally accommodate the introduction of new malware samples and families

    Automatic Malware Description via Attribute Tagging and Similarity Embedding

    Full text link
    With the rapid proliferation and increased sophistication of malicious software (malware), detection methods no longer rely only on manually generated signatures but have also incorporated more general approaches like machine learning detection. Although powerful for conviction of malicious artifacts, these methods do not produce any further information about the type of threat that has been detected neither allows for identifying relationships between malware samples. In this work, we address the information gap between machine learning and signature-based detection methods by learning a representation space for malware samples in which files with similar malicious behaviors appear close to each other. We do so by introducing a deep learning based tagging model trained to generate human-interpretable semantic descriptions of malicious software, which, at the same time provides potentially more useful and flexible information than malware family names. We show that the malware descriptions generated with the proposed approach correctly identify more than 95% of eleven possible tag descriptions for a given sample, at a deployable false positive rate of 1% per tag. Furthermore, we use the learned representation space to introduce a similarity index between malware files, and empirically demonstrate using dynamic traces from files' execution, that is not only more effective at identifying samples from the same families, but also 32 times smaller than those based on raw feature vectors
    corecore