576 research outputs found

    Performance analysis and optimization of DCT-based multicarrier system on frequency-selective fading channels

    Get PDF
    Regarded as one of the most promising transmission techniques for future wireless communications, the discrete cosine transform (DCT) based multicarrier modulation (MCM) system employs cosine basis as orthogonal functions for real-modulated symbols multiplexing, by which the minimum orthogonal frequency spacing can be reduced by half compared to discrete Fourier transform (DFT) based one. With a time-reversed pre-filter employed at the front of the receiver, interference-free one-tap equalization is achievable for the DCT-based systems. However, due to the correlated pre-filtering operation in time domain, the signal-to-noise ratio (SNR) is enhanced as a result at the output. This leads to reformulated detection criterion to compensate for such filtering effect, rendering minimum-mean-square-error (MMSE) and maximum likelihood (ML) detections applicable to the DCT-based multicarrier system. In this paper, following on the pre-filtering based DCT-MCM model that build in the literature work, we extend the overall system by considering both transceiver perfections and imperfections, where frequency offset, time offset and insufficient guard sequence are included. In the presence of those imperfection errors, the DCT-MCM systems are analysed in terms of desired signal power, inter-carrier interference (ICI) and inter-symbol interference (ISI). Thereafter, new detection algorithms based on zero forcing (ZF) iterative results are proposed to mitigate the imperfection effect. Numerical results show that the theoretical analysis match the simulation results, and the proposed iterative detection algorithms are able to improve the overall system performance significantly

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Peak to average power ratio reduction in NC–OFDM systems

    Get PDF
    Non contiguous orthogonal frequency division multiplexing (NC-OFDM) is an efficient and adaptable multicarrier modulation scheme to be used in cognitive radio communications. However like OFDM, NC-OFDM also suffers from the main drawback of high peak to average power ratio (PAPR). In this paper PAPR has been reduced by employing three different trigonometric transforms. Discrete cosine transform (DCT), discrete sine transform (DST) and fractional fourier transform (FRFT) has been combined with conventional selected level mapping (SLM) technique to reduce the PAPR of both OFDM and NC-OFDM based systems. The method combines all the transforms with SLM in different ways. Transforms DCT, DST and FRFT have been applied before the SLM block or inside the SLM block before IFFT. Simulation results show the comparative analysis of all the transforms using SLM in case of both OFDM and NC-OFDM based systems

    Time-Frequency Warped Waveforms

    Get PDF
    The forthcoming communication systems are advancing towards improved flexibility in various aspects. Improved flexibility is crucial to cater diverse service requirements. This letter proposes a novel waveform design scheme that exploits axis warping to enable peaceful coexistence of different pulse shapes. A warping transform manipulates the lattice samples non-uniformly and provides flexibility to handle the time-frequency occupancy of a signal. The proposed approach enables the utilization of flexible pulse shapes in a quasi-orthogonal manner and increases the spectral efficiency. In addition, the rectangular resource block structure, which assists an efficient resource allocation, is preserved with the warped waveform design as well.Comment: 4 pages, 5 figures; accepted version (The URL for the final version: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8540914&isnumber=8605392

    Reliability of Trigonometric Transform-based Multi-Carrier Scheme

    Get PDF
    This work is looking for a new physical layer of a multi-carrier wireless communication system to be implemented in low complexity way, resorting to suitable fast transform. The work presents and assesses a scheme based on Discrete Trigonometric Transform with appending symmetric redundancy either in each or multiple consecutive transformed blocks. A receiver front-end filter is proposed to enforce whole symmetry in the channel impulse response, and bank of one tap filter per sub-carrier is applied as an equalizer in the transform domain. The behaviour of the transceiver is studied in the context of practical impairments like fading channel, carrier frequency offset and narrow band interference. Moreover, the performance is evaluated in contrast with the state of art methods by means of computer simulations, and it has been found that the new scheme improves robustness and reliability of communication signal, and record lower peak to average power ratio. The study demonstrates that front-end matched filter effectively performs frequency synchronization to compensate the carrier frequency offset in the received signal

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure
    • …
    corecore