20,207 research outputs found

    Nucleation-free 3D3D rigidity

    Get PDF
    When all non-edge distances of a graph realized in Rd\mathbb{R}^{d} as a {\em bar-and-joint framework} are generically {\em implied} by the bar (edge) lengths, the graph is said to be {\em rigid} in Rd\mathbb{R}^{d}. For d=3d=3, characterizing rigid graphs, determining implied non-edges and {\em dependent} edge sets remains an elusive, long-standing open problem. One obstacle is to determine when implied non-edges can exist without non-trivial rigid induced subgraphs, i.e., {\em nucleations}, and how to deal with them. In this paper, we give general inductive construction schemes and proof techniques to generate {\em nucleation-free graphs} (i.e., graphs without any nucleation) with implied non-edges. As a consequence, we obtain (a) dependent graphs in 3D3D that have no nucleation; and (b) 3D3D nucleation-free {\em rigidity circuits}, i.e., minimally dependent edge sets in d=3d=3. It additionally follows that true rigidity is strictly stronger than a tractable approximation to rigidity given by Sitharam and Zhou \cite{sitharam:zhou:tractableADG:2004}, based on an inductive combinatorial characterization. As an independently interesting byproduct, we obtain a new inductive construction for independent graphs in 3D3D. Currently, very few such inductive constructions are known, in contrast to 2D2D

    Extension of One-Dimensional Proximity Regions to Higher Dimensions

    Get PDF
    Proximity maps and regions are defined based on the relative allocation of points from two or more classes in an area of interest and are used to construct random graphs called proximity catch digraphs (PCDs) which have applications in various fields. The simplest of such maps is the spherical proximity map which maps a point from the class of interest to a disk centered at the same point with radius being the distance to the closest point from the other class in the region. The spherical proximity map gave rise to class cover catch digraph (CCCD) which was applied to pattern classification. Furthermore for uniform data on the real line, the exact and asymptotic distribution of the domination number of CCCDs were analytically available. In this article, we determine some appealing properties of the spherical proximity map in compact intervals on the real line and use these properties as a guideline for defining new proximity maps in higher dimensions. Delaunay triangulation is used to partition the region of interest in higher dimensions. Furthermore, we introduce the auxiliary tools used for the construction of the new proximity maps, as well as some related concepts that will be used in the investigation and comparison of them and the resulting graphs. We characterize the geometry invariance of PCDs for uniform data. We also provide some newly defined proximity maps in higher dimensions as illustrative examples
    • …
    corecore