1 research outputs found

    A new model of soft tissue with constraints for interactive surgical simulation

    No full text
    Background and objectives: An accurate and real-time model of soft tissue is critical for surgical simulation for which a user interacts haptically and visually with simulated patients. This paper focuses on the real-time deformation model of brain tissue for the interactive surgical simulation, such as neurosurgical simulation. Methods: A new Finite Element Method (FEM) based model with constraints is proposed for the brain tissue in neurosurgical simulation. A new energy function of constraints characterizing the interaction between the virtual instrument and the soft tissue is incorporated into the optimization problem derived from the implicit integration scheme. Distance and permanent deformation constraints are introduced to describe the interaction in the convexity meningioma dissection and hemostasis. The proposed model is particularly suitable for GPU-based computing, making it possible to achieve real-time performance. Results and conclusions: Simulation results show that the simulated soft tissue exhibits the behaviors of adhesion and permanent deformatio
    corecore