811 research outputs found

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators

    Dynamic Active Constraints for Surgical Robots using Vector Field Inequalities

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still underrepresented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this work, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.Comment: Accepted on T-RO 2019, 19 Page

    Planning natural repointing manoeuvres for nano-spacecraft

    Get PDF
    In this paper the natural dynamics of a rigid body are exploited to plan attitude manoeuvres for a small spacecraft. By utilising the analytical solutions of the angular velocities and making use of Lax pair integration, the time evolution of the attitude of the spacecraft in a convenient quaternion form is derived. This enables repointing manoeuvres to be generated by optimising the free parameters of the analytical expressions, the initial angular velocities of the spacecraft, to match prescribed boundary conditions on the final attitude of the spacecraft. This produces reference motions which can be tracked using a simple proportional-derivative controller. The natural motions are compared in simulation to a conventional quaternion feedback controller and found to require lower accumulated torque. A simple obstacle avoidance algorithm, exploiting the analytic form of natural motions, is also described and implemented in simulation. The computational efficiency of the motion planning method is discussed

    Active Constraints using Vector Field Inequalities for Surgical Robots

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but is still underrepresented in deep brain neurosurgery and endonasal surgery where the workspace is constrained. In these conditions, the vision of surgeons is restricted to areas near the surgical tool tips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings, in particular in areas outside the surgical field-of-view. Active constraints can be used to prevent the tools from entering restricted zones and thus avoid collisions. In this paper, a vector field inequality is proposed that guarantees that tools do not enter restricted zones. Moreover, in contrast with early techniques, the proposed method limits the tool approach velocity in the direction of the forbidden zone boundary, guaranteeing a smooth behavior and that tangential velocities will not be disturbed. The proposed method is evaluated in simulations featuring two eight degrees-of-freedom manipulators that were custom-designed for deep neurosurgery. The results show that both manipulator-manipulator and manipulator-boundary collisions can be avoided using the vector field inequalities.Comment: Accepted on ICRA 2018, 8 page

    Planning natural repointing manoeuvres for nano-spacecraft

    Get PDF
    In this paper the natural dynamics of a rigid body are exploited to plan attitude manoeuvres for a small spacecraft. By utilising the analytical solutions of the angular velocities and making use of Lax pair integration, the time evolution of the attitude of the spacecraft in a convenient quaternion form is derived. This enables repointing manoeuvres to be generated by optimising the free parameters of the analytical expressions, the initial angular velocities of the spacecraft, to match prescribed boundary conditions on the final attitude of the spacecraft. This produces reference motions which can be tracked using a simple proportional-derivative controller. The natural motions are compared in simulation to a conventional quaternion feedback controller and found to require lower accumulated torque. A simple obstacle avoidance algorithm, exploiting the analytic form of natural motions, is also described and implemented in simulation. The computational efficiency of the motion planning method is discussed
    • …
    corecore