5,104 research outputs found

    On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

    Full text link
    We study two variants of the well-known orthogonal drawing model: (i) the smooth orthogonal, and (ii) the octilinear. Both models form an extension of the orthogonal, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively). For planar graphs of max-degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Monotone Grid Drawings of Planar Graphs

    Full text link
    A monotone drawing of a planar graph GG is a planar straight-line drawing of GG where a monotone path exists between every pair of vertices of GG in some direction. Recently monotone drawings of planar graphs have been proposed as a new standard for visualizing graphs. A monotone drawing of a planar graph is a monotone grid drawing if every vertex in the drawing is drawn on a grid point. In this paper we study monotone grid drawings of planar graphs in a variable embedding setting. We show that every connected planar graph of nn vertices has a monotone grid drawing on a grid of size O(n)×O(n2)O(n)\times O(n^2), and such a drawing can be found in O(n) time

    Strictly convex drawings of planar graphs

    Full text link
    Every three-connected planar graph with n vertices has a drawing on an O(n^2) x O(n^2) grid in which all faces are strictly convex polygons. These drawings are obtained by perturbing (not strictly) convex drawings on O(n) x O(n) grids. More generally, a strictly convex drawing exists on a grid of size O(W) x O(n^4/W), for any choice of a parameter W in the range n<W<n^2. Tighter bounds are obtained when the faces have fewer sides. In the proof, we derive an explicit lower bound on the number of primitive vectors in a triangle.Comment: 20 pages, 13 figures. to be published in Documenta Mathematica. The revision includes numerous small additions, corrections, and improvements, in particular: - a discussion of the constants in the O-notation, after the statement of thm.1. - a different set-up and clarification of the case distinction for Lemma

    Maximizing the Total Resolution of Graphs

    Full text link
    A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident to a common node (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we evaluate both by introducing the notion of "total resolution", that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a drawing is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Snapping Graph Drawings to the Grid Optimally

    Full text link
    In geographic information systems and in the production of digital maps for small devices with restricted computational resources one often wants to round coordinates to a rougher grid. This removes unnecessary detail and reduces space consumption as well as computation time. This process is called snapping to the grid and has been investigated thoroughly from a computational-geometry perspective. In this paper we investigate the same problem for given drawings of planar graphs under the restriction that their combinatorial embedding must be kept and edges are drawn straight-line. We show that the problem is NP-hard for several objectives and provide an integer linear programming formulation. Given a plane graph G and a positive integer w, our ILP can also be used to draw G straight-line on a grid of width w and minimum height (if possible).Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar
    corecore