1,063 research outputs found

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Embedding Stacked Polytopes on a Polynomial-Size Grid

    Full text link
    A stacking operation adds a dd-simplex on top of a facet of a simplicial dd-polytope while maintaining the convexity of the polytope. A stacked dd-polytope is a polytope that is obtained from a dd-simplex and a series of stacking operations. We show that for a fixed dd every stacked dd-polytope with nn vertices can be realized with nonnegative integer coordinates. The coordinates are bounded by O(n2log(2d))O(n^{2\log(2d)}), except for one axis, where the coordinates are bounded by O(n3log(2d))O(n^{3\log(2d)}). The described realization can be computed with an easy algorithm. The realization of the polytopes is obtained with a lifting technique which produces an embedding on a large grid. We establish a rounding scheme that places the vertices on a sparser grid, while maintaining the convexity of the embedding.Comment: 22 pages, 10 Figure

    Packing Topological Minors Half-Integrally

    Full text link
    The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering HH-minors for any fixed graph HH, the planarity of HH is equivalent with the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds with respect to the topological minor containment, which easily implies Thomas' conjecture. Indeed, we prove an even stronger statement in which those subdivisions are rooted at any choice of prescribed subsets of vertices. Precisely, we prove that for every graph HH, there exists a function ff such that for every graph GG, every sequence (Rv:vV(H))(R_v: v \in V(H)) of subsets of V(G)V(G) and every integer kk, either there exist kk subgraphs G1,G2,...,GkG_1,G_2,...,G_k of GG such that every vertex of GG belongs to at most two of G1,...,GkG_1,...,G_k and each GiG_i is isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each vV(H)v \in V(H), or there exists a set ZV(G)Z \subseteq V(G) with size at most f(k)f(k) intersecting all subgraphs of GG isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each vV(H)v \in V(H). Applications of this theorem include generalizations of algorithmic meta-theorems and structure theorems for HH-topological minor free (or HH-minor free) graphs to graphs that do not half-integrally pack many HH-topological minors (or HH-minors)

    Improved approximation for 3-dimensional matching via bounded pathwidth local search

    Full text link
    One of the most natural optimization problems is the k-Set Packing problem, where given a family of sets of size at most k one should select a maximum size subfamily of pairwise disjoint sets. A special case of 3-Set Packing is the well known 3-Dimensional Matching problem. Both problems belong to the Karp`s list of 21 NP-complete problems. The best known polynomial time approximation ratio for k-Set Packing is (k + eps)/2 and goes back to the work of Hurkens and Schrijver [SIDMA`89], which gives (1.5 + eps)-approximation for 3-Dimensional Matching. Those results are obtained by a simple local search algorithm, that uses constant size swaps. The main result of the paper is a new approach to local search for k-Set Packing where only a special type of swaps is considered, which we call swaps of bounded pathwidth. We show that for a fixed value of k one can search the space of r-size swaps of constant pathwidth in c^r poly(|F|) time. Moreover we present an analysis proving that a local search maximum with respect to O(log |F|)-size swaps of constant pathwidth yields a polynomial time (k + 1 + eps)/3-approximation algorithm, improving the best known approximation ratio for k-Set Packing. In particular we improve the approximation ratio for 3-Dimensional Matching from 3/2 + eps to 4/3 + eps.Comment: To appear in proceedings of FOCS 201

    A generalization of Voronoi's reduction theory and its application

    Full text link
    We consider Voronoi's reduction theory of positive definite quadratic forms which is based on Delone subdivision. We extend it to forms and Delone subdivisions having a prescribed symmetry group. Even more general, the theory is developed for forms which are restricted to a linear subspace in the space of quadratic forms. We apply the new theory to complete the classification of totally real thin algebraic number fields which was recently initiated by Bayer-Fluckiger and Nebe. Moreover, we apply it to construct new best known sphere coverings in dimensions 9,..., 15.Comment: 31 pages, 2 figures, 2 tables, (v4) minor changes, to appear in Duke Math.
    corecore