23,888 research outputs found

    A new fractional derivative involving the normalized sinc function without singular kernel

    Full text link
    In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems.Comment: Keywords: Fractional derivative, anomalous heat diffusion, integral transform, analytical solutio

    A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow

    Get PDF
    In this article we propose a new fractional derivative without singular kernel. We consider the potential application for modeling the steady heat-conduction problem. The analytical solution of the fractional-order heat flow is also obtained by means of the Laplace transform.Comment: 1 figur

    Kernel Density Estimation with Linked Boundary Conditions

    Get PDF
    Kernel density estimation on a finite interval poses an outstanding challenge because of the well-recognized bias at the boundaries of the interval. Motivated by an application in cancer research, we consider a boundary constraint linking the values of the unknown target density function at the boundaries. We provide a kernel density estimator (KDE) that successfully incorporates this linked boundary condition, leading to a non-self-adjoint diffusion process and expansions in non-separable generalized eigenfunctions. The solution is rigorously analyzed through an integral representation given by the unified transform (or Fokas method). The new KDE possesses many desirable properties, such as consistency, asymptotically negligible bias at the boundaries, and an increased rate of approximation, as measured by the AMISE. We apply our method to the motivating example in biology and provide numerical experiments with synthetic data, including comparisons with state-of-the-art KDEs (which currently cannot handle linked boundary constraints). Results suggest that the new method is fast and accurate. Furthermore, we demonstrate how to build statistical estimators of the boundary conditions satisfied by the target function without apriori knowledge. Our analysis can also be extended to more general boundary conditions that may be encountered in applications

    Exactly solvable variable parametric Burgers type models

    Full text link
    Exactly solvable variable parametric Burgers type equations in one-dimension are introduced, and two different approaches for solving the corresponding initial value problems are given. The first one is using the relationship between the variable parametric models and their standard counterparts. The second approach is a direct linearization of the variable parametric Burgers model to a variable parametric parabolic model via a generalized Cole-Hopf transform. Eventually, the problem of finding analytic and exact solutions of the variable parametric models reduces to that of solving a corresponding second order linear ODE with time dependent coefficients. This makes our results applicable to a wide class of exactly solvable Burgers type equations related with the classical Sturm-Liouville problems for the orthogonal polynomials

    Boundary integral formulation for interfacial cracks in thermodiffusive bimaterials

    Full text link
    An original boundary integral formulation is proposed for the problem of a semi-infinite crack at the interface between two dissimilar elastic materials in the presence of heat flows and mass diffusion. Symmetric and skew-symmetric weight function matrices are used together with a generalized Betti's reciprocity theorem in order to derive a system of integral equations that relate the applied loading, the temperature and mass concentration fields, the heat and mass fluxes on the fracture surfaces and the resulting crack opening. The obtained integral identities can have many relevant applications, such as for the modelling of crack and damage processes at the interface between different components in electrochemical energy devices characterized by multi-layered structures (solid oxide fuel cells and lithium ions batteries).Comment: 43 pages, 9 figure
    • …
    corecore