1,221 research outputs found

    Underdetermined-order recursive least-squares adaptive filtering: The concept and algorithms

    No full text
    Published versio

    LQG Online Learning

    Get PDF
    Optimal control theory and machine learning techniques are combined to formulate and solve in closed form an optimal control formulation of online learning from supervised examples with regularization of the updates. The connections with the classical Linear Quadratic Gaussian (LQG) optimal control problem, of which the proposed learning paradigm is a non-trivial variation as it involves random matrices, are investigated. The obtained optimal solutions are compared with the Kalman-filter estimate of the parameter vector to be learned. It is shown that the proposed algorithm is less sensitive to outliers with respect to the Kalman estimate (thanks to the presence of the regularization term), thus providing smoother estimates with respect to time. The basic formulation of the proposed online-learning framework refers to a discrete-time setting with a finite learning horizon and a linear model. Various extensions are investigated, including the infinite learning horizon and, via the so-called "kernel trick", the case of nonlinear models

    On adaptive filter structure and performance

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D75686/87 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    High-Performance Small-Scale Solvers for Moving Horizon Estimation

    Get PDF
    In this paper we present a moving horizon estimation (MHE) formulation suitable to easily describe the quadratic programs (QPs) arising in constrained and nonlinear MHE. We propose algorithms for factorization and solution of the underlying Karush-Kuhn-Tucker (KKT) system, as well as the efficient implementation techniques focusing on small-scale problems. The proposed MHE solver is implemented using custom linear algebra routines and is compared against implementations using BLAS libraries. Additionally, the MHE solver is interfaced to a code generation tool for nonlinear model predictive control (NMPC) and nonlinear MHE (NMHE). On an example problem with 33 states, 6 inputs and 15 estimation intervals execution times below 500 microseconds are reported for the QP underlying the NMHE. 1

    Ensemble Kalman filter for neural network based one-shot inversion

    Full text link
    We study the use of novel techniques arising in machine learning for inverse problems. Our approach replaces the complex forward model by a neural network, which is trained simultaneously in a one-shot sense when estimating the unknown parameters from data, i.e. the neural network is trained only for the unknown parameter. By establishing a link to the Bayesian approach to inverse problems, an algorithmic framework is developed which ensures the feasibility of the parameter estimate w.r. to the forward model. We propose an efficient, derivative-free optimization method based on variants of the ensemble Kalman inversion. Numerical experiments show that the ensemble Kalman filter for neural network based one-shot inversion is a promising direction combining optimization and machine learning techniques for inverse problems

    Completely Recursive Least Squares and Its Applications

    Get PDF
    The matrix-inversion-lemma based recursive least squares (RLS) approach is of a recursive form and free of matrix inversion, and has excellent performance regarding computation and memory in solving the classic least-squares (LS) problem. It is important to generalize RLS for generalized LS (GLS) problem. It is also of value to develop an efficient initialization for any RLS algorithm. In Chapter 2, we develop a unified RLS procedure to solve the unconstrained/linear-equality (LE) constrained GLS. We also show that the LE constraint is in essence a set of special error-free observations and further consider the GLS with implicit LE constraint in observations (ILE-constrained GLS). Chapter 3 treats the RLS initialization-related issues, including rank check, a convenient method to compute the involved matrix inverse/pseudoinverse, and resolution of underdetermined systems. Based on auxiliary-observations, the RLS recursion can start from the first real observation and possible LE constraints are also imposed recursively. The rank of the system is checked implicitly. If the rank is deficient, a set of refined non-redundant observations is determined alternatively. In Chapter 4, base on [Li07], we show that the linear minimum mean square error (LMMSE) estimator, as well as the optimal Kalman filter (KF) considering various correlations, can be calculated from solving an equivalent GLS using the unified RLS. In Chapters 5 & 6, an approach of joint state-and-parameter estimation (JSPE) in power system monitored by synchrophasors is adopted, where the original nonlinear parameter problem is reformulated as two loosely-coupled linear subproblems: state tracking and parameter tracking. Chapter 5 deals with the state tracking which determines the voltages in JSPE, where dynamic behavior of voltages under possible abrupt changes is studied. Chapter 6 focuses on the subproblem of parameter tracking in JSPE, where a new prediction model for parameters with moving means is introduced. Adaptive filters are developed for the above two subproblems, respectively, and both filters are based on the optimal KF accounting for various correlations. Simulations indicate that the proposed approach yields accurate parameter estimates and improves the accuracy of the state estimation, compared with existing methods

    Solving, Estimating and Selecting Nonlinear Dynamic Economic Models without the Curse of Dimensionality

    Get PDF
    A welfare analysis of a risky policy is impossible within a linear or linearized model and its certainty equivalence property. The presented algorithms are designed as a toolbox for a general model class. The computational challenges are considerable and I concentrate on the numerics and statistics for a simple model of dynamic consumption and labor choice. I calculate the optimal policy and estimate the posterior density of structural parameters and the marginal likelihood within a nonlinear state space model. My approach is even in an interpreted language twenty time faster than the only alternative compiled approach. The model is estimated on simulated data in order to test the routines against known true parameters. The policy function is approximated by Smolyak Chebyshev polynomials and the rational expectation integral by Smolyak Gaussian quadrature. The Smolyak operator is used to extend univariate approximation and integration operators to many dimensions. It reduces the curse of dimensionality from exponential to polynomial growth. The likelihood integrals are evaluated by a Gaussian quadrature and Gaussian quadrature particle filter. The bootstrap or sequential importance resampling particle filter is used as an accuracy benchmark. The posterior is estimated by the Gaussian filter and a Metropolis- Hastings algorithm. I propose a genetic extension of the standard Metropolis-Hastings algorithm by parallel random walk sequences. This improves the robustness of start values and the global maximization properties. Moreover it simplifies a cluster implementation and the random walk variances decision is reduced to only two parameters so that almost no trial sequences are needed. Finally the marginal likelihood is calculated as a criterion for nonnested and quasi-true models in order to select between the nonlinear estimates and a first order perturbation solution combined with the Kalman filter.stochastic dynamic general equilibrium model, Chebyshev polynomials, Smolyak operator, nonlinear state space filter, Curse of Dimensionality, posterior of structural parameters, marginal likelihood
    corecore