230 research outputs found

    Exact Solutions for Domain Walls in Coupled Complex Ginzburg - Landau Equations

    Full text link
    The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for the evolution of slowly varying wave packets in nonlinear dissipative media. A front (shock) is a transient layer between a plane-wave state and a zero background. We report exact solutions for domain walls, i.e., pairs of fronts with opposite polarities, in a system of two coupled CGLEs, which describe transient layers between semi-infinite domains occupied by each component in the absence of the other one. For this purpose, a modified Hirota bilinear operator, first proposed by Bekki and Nozaki, is employed. A novel factorization procedure is applied to reduce the intermediate calculations considerably. The ensuing system of equations for the amplitudes and frequencies is solved by means of computer-assisted algebra. Exact solutions for mutually-locked front pairs of opposite polarities, with one or several free parameters, are thus generated. The signs of the cubic gain/loss, linear amplification/attenuation, and velocity of the coupled-front complex can be adjusted in a variety of configurations. Numerical simulations are performed to study the stability properties of such fronts.Comment: Journal of the Physical Society of Japan, in pres

    Application of Bernoulli Sub-ODE Method For Finding Travelling Wave Solutions of Schrodinger Equation Power Law Nonlinearity

    Get PDF
    In this paper, the exact travelling wave solution of the Schr¨odinger equation with power law nonlinearity is studied by the Sub-ODE method. It is shown that the method is one of the most effective approaches for finding exact solutions of nonlinear differential equations

    Generalized and Improved (G'/G)-Expansion Method for Nonlinear Evolution Equations

    Get PDF
    A generalized and improved (G'/G)-expansion method is proposed for finding more general type and new travelling wave solutions of nonlinear evolution equations. To illustrate the novelty and advantage of the proposed method, we solve the KdV equation, the Zakharov-Kuznetsov- Benjamin-Bona-Mahony �ZKBBM� equation and the strain wave equation in microstructured solids. Abundant exact travelling wave solutions of these equations are obtained, which include the soliton, the hyperbolic function, the trigonometric function, and the rational functions. Also it is shown that the proposed method is efficient for solving nonlinear evolution equations in mathematical physics and in engineering
    corecore