13 research outputs found

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    Sequence Design for Cognitive CDMA Communications under Arbitrary Spectrum Hole Constraint

    Full text link
    To support interference-free quasi-synchronous code-division multiple-access (QS-CDMA) communication with low spectral density profile in a cognitive radio (CR) network, it is desirable to design a set of CDMA spreading sequences with zero-correlation zone (ZCZ) property. However, traditional ZCZ sequences (which assume the availability of the entire spectral band) cannot be used because their orthogonality will be destroyed by the spectrum hole constraint in a CR channel. To date, analytical construction of ZCZ CR sequences remains open. Taking advantage of the Kronecker sequence property, a novel family of sequences (called "quasi-ZCZ" CR sequences) which displays zero cross-correlation and near-zero auto-correlation zone property under arbitrary spectrum hole constraint is presented in this paper. Furthermore, a novel algorithm is proposed to jointly optimize the peak-to-average power ratio (PAPR) and the periodic auto-correlations of the proposed quasi-ZCZ CR sequences. Simulations show that they give rise to single-user bit-error-rate performance in CR-CDMA systems which outperform traditional non-contiguous multicarrier CDMA and transform domain communication systems; they also lead to CR-CDMA systems which are more resilient than non-contiguous OFDM systems to spectrum sensing mismatch, due to the wideband spreading.Comment: 13 pages,10 figures,Accepted by IEEE Journal on Selected Areas in Communications (JSAC)--Special Issue:Cognitive Radio Nov, 201

    Simultaneous transmission and reception on all elements of an array: binary code excitation

    Get PDF
    Pulse-echo arrays are used in radar, sonar, seismic, medical and non-destructive evaluation. There is a trend to produce arrays with an ever-increasing number of elements. This trend presents two major challenges: (i) often the size of the elements is reduced resulting in a lower signal-to-noise ratio (SNR) and (ii) the time required to record all of the signals that correspond to every transmit–receive path increases. Coded sequences with good autocorrelation properties can increase the SNR while orthogonal sets can be used to simultaneously acquire all of the signals that correspond to every transmit–receive path. However, a central problem of conventional coded sequences is that they cannot achieve good autocorrelation and orthogonality properties simultaneously due to their length being limited by the location of the closest reflectors. In this paper, a solution to this problem is presented by using coded sequences that have receive intervals. The proposed approach can be more than one order of magnitude faster than conventional methods. In addition, binary excitation and quantization can be employed, which reduces the data throughput by roughly an order of magnitude and allows for higher sampling rates. While this concept is generally applicable to any field, a 16-element system was built to experimentally demonstrate this principle for the first time using a conventional medical ultrasound probe

    Near-Optimal Zero Correlation Zone Sequence Sets from Paraunitary Matrices

    Get PDF
    Zero correlation zone (ZCZ) sequence sets play an important role in interference-free quasi-synchronous code-division multiple access communications. In this paper, for the first time, we investigate the periodic correlation properties of polyphase sequences obtained from paraunitary (PU) matrices, which shows the inherent relationship between PU matrix and ZCZ sequence sets. Our investigation suggests that any arbitrary PU matrix can produce ZCZ sequence sets by controlling its expanded form. The key idea is to impose certain restrictions on the expanded forms of the PU matrices to enable precise computation of the periodic correlation functions of the constructed sequences. We show that our proposed construction leads to near-optimal ZCZ sequence sets with regard to the ZCZ set size upper bound
    corecore