161,205 research outputs found

    Proof Theory and Ordered Groups

    Full text link
    Ordering theorems, characterizing when partial orders of a group extend to total orders, are used to generate hypersequent calculi for varieties of lattice-ordered groups (l-groups). These calculi are then used to provide new proofs of theorems arising in the theory of ordered groups. More precisely: an analytic calculus for abelian l-groups is generated using an ordering theorem for abelian groups; a calculus is generated for l-groups and new decidability proofs are obtained for the equational theory of this variety and extending finite subsets of free groups to right orders; and a calculus for representable l-groups is generated and a new proof is obtained that free groups are orderable

    Solving Functional Constraints by Variable Substitution

    Full text link
    Functional constraints and bi-functional constraints are an important constraint class in Constraint Programming (CP) systems, in particular for Constraint Logic Programming (CLP) systems. CP systems with finite domain constraints usually employ CSP-based solvers which use local consistency, for example, arc consistency. We introduce a new approach which is based instead on variable substitution. We obtain efficient algorithms for reducing systems involving functional and bi-functional constraints together with other non-functional constraints. It also solves globally any CSP where there exists a variable such that any other variable is reachable from it through a sequence of functional constraints. Our experiments on random problems show that variable elimination can significantly improve the efficiency of solving problems with functional constraints

    Reconstructing Rational Functions with FireFly\texttt{FireFly}

    Full text link
    We present the open-source C++\texttt{C++} library FireFly\texttt{FireFly} for the reconstruction of multivariate rational functions over finite fields. We discuss the involved algorithms and their implementation. As an application, we use FireFly\texttt{FireFly} in the context of integration-by-parts reductions and compare runtime and memory consumption to a fully algebraic approach with the program Kira\texttt{Kira}.Comment: 46 pages, 3 figures, 6 tables; v2: matches published versio

    Antimatroids and Balanced Pairs

    Full text link
    We generalize the 1/3-2/3 conjecture from partially ordered sets to antimatroids: we conjecture that any antimatroid has a pair of elements x,y such that x has probability between 1/3 and 2/3 of appearing earlier than y in a uniformly random basic word of the antimatroid. We prove the conjecture for antimatroids of convex dimension two (the antimatroid-theoretic analogue of partial orders of width two), for antimatroids of height two, for antimatroids with an independent element, and for the perfect elimination antimatroids and node search antimatroids of several classes of graphs. A computer search shows that the conjecture is true for all antimatroids with at most six elements.Comment: 16 pages, 5 figure
    • …
    corecore