3,674 research outputs found

    On Asymptotic Optimality of Dual Scheduling Algorithm In A Generalized Switch

    Get PDF
    Generalized switch is a model of a queueing system where parallel servers are interdependent and have time-varying service capabilities. This paper considers the dual scheduling algorithm that uses rate control and queue-length based scheduling to allocate resources for a generalized switch. We consider a saturated system in which each user has infinite amount of data to be served. We prove the asymptotic optimality of the dual scheduling algorithm for such a system, which says that the vector of average service rates of the scheduling algorithm maximizes some aggregate concave utility functions. As the fairness objectives can be achieved by appropriately choosing utility functions, the asymptotic optimality establishes the fairness properties of the dual scheduling algorithm. The dual scheduling algorithm motivates a new architecture for scheduling, in which an additional queue is introduced to interface the user data queue and the time-varying server and to modulate the scheduling process, so as to achieve different performance objectives. Further research would include scheduling with Quality of Service guarantees with the dual scheduler, and its application and implementation in various versions of the generalized switch model

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Receiver-Based Flow Control for Networks in Overload

    Get PDF
    We consider utility maximization in networks where the sources do not employ flow control and may consequently overload the network. In the absence of flow control at the sources, some packets will inevitably have to be dropped when the network is in overload. To that end, we first develop a distributed, threshold-based packet dropping policy that maximizes the weighted sum throughput. Next, we consider utility maximization and develop a receiver-based flow control scheme that, when combined with threshold-based packet dropping, achieves the optimal utility. The flow control scheme creates virtual queues at the receivers as a push-back mechanism to optimize the amount of data delivered to the destinations via back-pressure routing. A novel feature of our scheme is that a utility function can be assigned to a collection of flows, generalizing the traditional approach of optimizing per-flow utilities. Our control policies use finite-buffer queues and are independent of arrival statistics. Their near-optimal performance is proved and further supported by simulation results.Comment: 14 pages, 4 figures, 5 tables, preprint submitted to IEEE INFOCOM 201

    An Energy-Efficient Controller for Wirelessly-Powered Communication Networks

    Full text link
    In a wirelessly-powered communication network (WPCN), an energy access point (E-AP) supplies the energy needs of the network nodes through radio frequency wave transmission, and the nodes store their received energy in their batteries for possible data transmission. In this paper, we propose an online control policy for energy transfer from the E-AP to the wireless nodes and for data transfer among the nodes. With our proposed control policy, all data queues of the nodes are stable, while the average energy consumption of the network is shown to be within a bounded gap of the minimum energy required for stabilizing the network. Our proposed policy is designed using a quadratic Lyapunov function to capture the limitations on the energy consumption of the nodes imposed by their battery levels. We show that under the proposed control policy, the backlog level in the data queues and the stored energy level in the batteries fluctuate in small intervals around some constant levels. Consequently, by imposing negligible average data drop rate, the data buffer size and the battery capacity of the nodes can be significantly reduced
    corecore