120,152 research outputs found

    Fast Hierarchical Clustering and Other Applications of Dynamic Closest Pairs

    Full text link
    We develop data structures for dynamic closest pair problems with arbitrary distance functions, that do not necessarily come from any geometric structure on the objects. Based on a technique previously used by the author for Euclidean closest pairs, we show how to insert and delete objects from an n-object set, maintaining the closest pair, in O(n log^2 n) time per update and O(n) space. With quadratic space, we can instead use a quadtree-like structure to achieve an optimal time bound, O(n) per update. We apply these data structures to hierarchical clustering, greedy matching, and TSP heuristics, and discuss other potential applications in machine learning, Groebner bases, and local improvement algorithms for partition and placement problems. Experiments show our new methods to be faster in practice than previously used heuristics.Comment: 20 pages, 9 figures. A preliminary version of this paper appeared at the 9th ACM-SIAM Symp. on Discrete Algorithms, San Francisco, 1998, pp. 619-628. For source code and experimental results, see http://www.ics.uci.edu/~eppstein/projects/pairs

    Diffeomorphic density matching by optimal information transport

    Full text link
    We address the following problem: given two smooth densities on a manifold, find an optimal diffeomorphism that transforms one density into the other. Our framework builds on connections between the Fisher-Rao information metric on the space of probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport, and modifications thereof, allows us to construct numerical algorithms for density matching. The algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic registration. Our methods have applications in medical image registration, texture mapping, image morphing, non-uniform random sampling, and mesh adaptivity. Some of these applications are illustrated in examples.Comment: 35 page

    Partial-Matching and Hausdorff RMS Distance Under Translation: Combinatorics and Algorithms

    Full text link
    We consider the RMS distance (sum of squared distances between pairs of points) under translation between two point sets in the plane, in two different setups. In the partial-matching setup, each point in the smaller set is matched to a distinct point in the bigger set. Although the problem is not known to be polynomial, we establish several structural properties of the underlying subdivision of the plane and derive improved bounds on its complexity. These results lead to the best known algorithm for finding a translation for which the partial-matching RMS distance between the point sets is minimized. In addition, we show how to compute a local minimum of the partial-matching RMS distance under translation, in polynomial time. In the Hausdorff setup, each point is paired to its nearest neighbor in the other set. We develop algorithms for finding a local minimum of the Hausdorff RMS distance in nearly linear time on the line, and in nearly quadratic time in the plane. These improve substantially the worst-case behavior of the popular ICP heuristics for solving this problem.Comment: 31 pages, 6 figure
    • …
    corecore