50 research outputs found

    Minimizing Supervision in Multi-label Categorization

    Full text link
    Multiple categories of objects are present in most images. Treating this as a multi-class classification is not justified. We treat this as a multi-label classification problem. In this paper, we further aim to minimize the supervision required for providing supervision in multi-label classification. Specifically, we investigate an effective class of approaches that associate a weak localization with each category either in terms of the bounding box or segmentation mask. Doing so improves the accuracy of multi-label categorization. The approach we adopt is one of active learning, i.e., incrementally selecting a set of samples that need supervision based on the current model, obtaining supervision for these samples, retraining the model with the additional set of supervised samples and proceeding again to select the next set of samples. A crucial concern is the choice of the set of samples. In doing so, we provide a novel insight, and no specific measure succeeds in obtaining a consistently improved selection criterion. We, therefore, provide a selection criterion that consistently improves the overall baseline criterion by choosing the top k set of samples for a varied set of criteria. Using this criterion, we are able to show that we can retain more than 98% of the fully supervised performance with just 20% of samples (and more than 96% using 10%) of the dataset on PASCAL VOC 2007 and 2012. Also, our proposed approach consistently outperforms all other baseline metrics for all benchmark datasets and model combinations.Comment: Accepted in CVPR-W 202

    Active-Learning-as-a-Service: An Efficient MLOps System for Data-Centric AI

    Full text link
    The success of today's AI applications requires not only model training (Model-centric) but also data engineering (Data-centric). In data-centric AI, active learning (AL) plays a vital role, but current AL tools can not perform AL tasks efficiently. To this end, this paper presents an efficient MLOps system for AL, named ALaaS (Active-Learning-as-a-Service). Specifically, ALaaS adopts a server-client architecture to support an AL pipeline and implements stage-level parallelism for high efficiency. Meanwhile, caching and batching techniques are employed to further accelerate the AL process. In addition to efficiency, ALaaS ensures accessibility with the help of the design philosophy of configuration-as-a-service. It also abstracts an AL process to several components and provides rich APIs for advanced users to extend the system to new scenarios. Extensive experiments show that ALaaS outperforms all other baselines in terms of latency and throughput. Further ablation studies demonstrate the effectiveness of our design as well as ALaaS's ease to use. Our code is available at \url{https://github.com/MLSysOps/alaas}.Comment: 8 pages, 7 figure

    CLINICAL: Targeted Active Learning for Imbalanced Medical Image Classification

    Full text link
    Training deep learning models on medical datasets that perform well for all classes is a challenging task. It is often the case that a suboptimal performance is obtained on some classes due to the natural class imbalance issue that comes with medical data. An effective way to tackle this problem is by using targeted active learning, where we iteratively add data points to the training data that belong to the rare classes. However, existing active learning methods are ineffective in targeting rare classes in medical datasets. In this work, we propose Clinical (targeted aCtive Learning for ImbalaNced medICal imAge cLassification) a framework that uses submodular mutual information functions as acquisition functions to mine critical data points from rare classes. We apply our framework to a wide-array of medical imaging datasets on a variety of real-world class imbalance scenarios - namely, binary imbalance and long-tail imbalance. We show that Clinical outperforms the state-of-the-art active learning methods by acquiring a diverse set of data points that belong to the rare classes.Comment: Accepted to MICCAI 2022 MILLanD Worksho

    Active Learning for Fine-Grained Sketch-Based Image Retrieval

    Full text link
    The ability to retrieve a photo by mere free-hand sketching highlights the immense potential of Fine-grained sketch-based image retrieval (FG-SBIR). However, its rapid practical adoption, as well as scalability, is limited by the expense of acquiring faithful sketches for easily available photo counterparts. A solution to this problem is Active Learning, which could minimise the need for labeled sketches while maximising performance. Despite extensive studies in the field, there exists no work that utilises it for reducing sketching effort in FG-SBIR tasks. To this end, we propose a novel active learning sampling technique that drastically minimises the need for drawing photo sketches. Our proposed approach tackles the trade-off between uncertainty and diversity by utilising the relationship between the existing photo-sketch pair to a photo that does not have its sketch and augmenting this relation with its intermediate representations. Since our approach relies only on the underlying data distribution, it is agnostic of the modelling approach and hence is applicable to other cross-modal instance-level retrieval tasks as well. With experimentation over two publicly available fine-grained SBIR datasets ChairV2 and ShoeV2, we validate our approach and reveal its superiority over adapted baselines.Comment: Accepted at BMVC 202

    Towards Comparable Active Learning

    Full text link
    Active Learning has received significant attention in the field of machine learning for its potential in selecting the most informative samples for labeling, thereby reducing data annotation costs. However, we show that the reported lifts in recent literature generalize poorly to other domains leading to an inconclusive landscape in Active Learning research. Furthermore, we highlight overlooked problems for reproducing AL experiments that can lead to unfair comparisons and increased variance in the results. This paper addresses these issues by providing an Active Learning framework for a fair comparison of algorithms across different tasks and domains, as well as a fast and performant oracle algorithm for evaluation. To the best of our knowledge, we propose the first AL benchmark that tests algorithms in 3 major domains: Tabular, Image, and Text. We report empirical results for 6 widely used algorithms on 7 real-world and 2 synthetic datasets and aggregate them into a domain-specific ranking of AL algorithms
    corecore