6 research outputs found

    SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation

    Full text link
    One of the biggest challenges in designing mispronunciation detection models is the unavailability of labeled L2 speech data. To overcome such data scarcity, we introduce SpeechBlender -- a fine-grained data augmentation pipeline for generating mispronunciation errors. The SpeechBlender utilizes varieties of masks to target different regions of a phonetic unit, and use the mixing factors to linearly interpolate raw speech signals while generating erroneous pronunciation instances. The masks facilitate smooth blending of the signals, thus generating more effective samples than the `Cut/Paste' method. We show the effectiveness of our augmentation technique in a phoneme-level pronunciation quality assessment task, leveraging only a good pronunciation dataset. With SpeechBlender augmentation, we observed a 3% and 2% increase in Pearson correlation coefficient (PCC) compared to no-augmentation and goodness of pronunciation augmentation scenarios respectively for Speechocean762 testset. Moreover, a 2% rise in PCC is observed when comparing our single-task phoneme-level mispronunciation detection model with a multi-task learning model using multiple-granularity information.Comment: 5 pages, submitted to ICASSP 202

    Automatic Screening of Childhood Speech Sound Disorders and Detection of Associated Pronunciation Errors

    Full text link
    Speech disorders in children can affect their fluency and intelligibility. Delay in their diagnosis and treatment increases the risk of social impairment and learning disabilities. With the significant shortage of Speech and Language Pathologists (SLPs), there is an increasing interest in Computer-Aided Speech Therapy tools with automatic detection and diagnosis capability. However, the scarcity and unreliable annotation of disordered child speech corpora along with the high acoustic variations in the child speech data has impeded the development of reliable automatic detection and diagnosis of childhood speech sound disorders. Therefore, this thesis investigates two types of detection systems that can be achieved with minimum dependency on annotated mispronounced speech data. First, a novel approach that adopts paralinguistic features which represent the prosodic, spectral, and voice quality characteristics of the speech was proposed to perform segment- and subject-level classification of Typically Developing (TD) and Speech Sound Disordered (SSD) child speech using a binary Support Vector Machine (SVM) classifier. As paralinguistic features are both language- and content-independent, they can be extracted from an unannotated speech signal. Second, a novel Mispronunciation Detection and Diagnosis (MDD) approach was introduced to detect the pronunciation errors made due to SSDs and provide low-level diagnostic information that can be used in constructing formative feedback and a detailed diagnostic report. Unlike existing MDD methods where detection and diagnosis are performed at the phoneme level, the proposed method achieved MDD at the speech attribute level, namely the manners and places of articulations. The speech attribute features describe the involved articulators and their interactions when making a speech sound allowing a low-level description of the pronunciation error to be provided. Two novel methods to model speech attributes are further proposed in this thesis, a frame-based (phoneme-alignment) method leveraging the Multi-Task Learning (MTL) criterion and training a separate model for each attribute, and an alignment-free jointly-learnt method based on the Connectionist Temporal Classification (CTC) sequence to sequence criterion. The proposed techniques have been evaluated using standard and publicly accessible adult and child speech corpora, while the MDD method has been validated using L2 speech corpora
    corecore