28 research outputs found

    Meta Reinforcement Learning for Sim-to-real Domain Adaptation

    Full text link
    Modern reinforcement learning methods suffer from low sample efficiency and unsafe exploration, making it infeasible to train robotic policies entirely on real hardware. In this work, we propose to address the problem of sim-to-real domain transfer by using meta learning to train a policy that can adapt to a variety of dynamic conditions, and using a task-specific trajectory generation model to provide an action space that facilitates quick exploration. We evaluate the method by performing domain adaptation in simulation and analyzing the structure of the latent space during adaptation. We then deploy this policy on a KUKA LBR 4+ robot and evaluate its performance on a task of hitting a hockey puck to a target. Our method shows more consistent and stable domain adaptation than the baseline, resulting in better overall performance.Comment: Submitted to ICRA 202

    Alpha Net: Adaptation with Composition in Classifier Space

    Full text link
    Deep learning classification models typically train poorly on classes with small numbers of examples. Motivated by the human ability to solve this task, models have been developed that transfer knowledge from classes with many examples to learn classes with few examples. Critically, the majority of these models transfer knowledge within model feature space. In this work, we demonstrate that transferring knowledge within classified space is more effective and efficient. Specifically, by linearly combining strong nearest neighbor classifiers along with a weak classifier, we are able to compose a stronger classifier. Uniquely, our model can be implemented on top of any existing classification model that includes a classifier layer. We showcase the success of our approach in the task of long-tailed recognition, whereby the classes with few examples, otherwise known as the "tail" classes, suffer the most in performance and are the most challenging classes to learn. Using classifier-level knowledge transfer, we are able to drastically improve - by a margin as high as 12.6% - the state-of-the-art performance on the "tail" categories.Comment: Under revie
    corecore