1,734 research outputs found

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes

    MICROANGIOGRAM VIDEO COMPRESSION USING ADAPTIVE PREDICTION

    Get PDF
    Coronary angiography is an X-ray examination of the heart\u27s arteries. This is an essential technique for diagnosis of heart damages. Image sequences from digital angiography contain areas of high diagnostic interest. Loss of information due to compression for regions of interest (ROI) in angiograms is not tolerable. Since Commercially available technology such as JPEG and MPEG do not satisfy medical requirements due to their severe blockartifacts. In this paper, a new compression algorithm that achieves high compression ratio and excellent reconstruction quality for video rate or sub-video rate angiograms is developed. The proposed algorithm exploits temporal spatial and spectral redundancies in backward adaptive fashion with Extremely low side information. An experimental result shows that the proposed scheme provides significant improvements in compression efficiencies
    corecore