518 research outputs found

    A chaotic spread spectrum system for underwater acoustic communication

    Get PDF
    The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).Peer reviewedPostprin

    Chirp Slope Keying for Underwater Communications

    Get PDF
    This paper presents a novel broadband modulation method for digital underwater communications: Chirp Slope Keying (CSK). In its simplest form, the binary information modulates the slope of a linear chirp, with up-chirps representing ones and down-chirps representing zeros. Performance evaluation in the form of probability of error vs. SNR show that the system performs as expected for AWGN environments and very well for more realistic models for underwater acoustical communications, such as the Raylegih channel with Doppler, delays, phase offset, and multipath

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Chirp Slope Keying for Underwater Communications

    Get PDF
    This paper presents a novel broadband modulation method for digital underwater communications: Chirp Slope Keying (CSK). In its simplest form, the binary information modulates the slope of a linear chirp, with up-chirps representing ones and down-chirps representing zeros. Performance evaluation in the form of probability of error vs. SNR show that the system performs as expected for AWGN environments and very well for more realistic models for underwater acoustical communications, such as the Raylegih channel with Doppler, delays, phase offset, and multipath

    A Novel Chirp Slope Keying Modulation Scheme for Underwater Communication

    Get PDF
    A digital modulation method using Chirp-Slope Keying (CSK) is developed for coherent underwater acoustic communications. Effective signal detection is a critical stage in the implementation of any communications system; we will see that CSK solves some significant challenges to reliable detection. This thesis is primarily based on analyzing the effectiveness of CSK through simulations using Matlab\u27s Simulink for underwater communications. The procedure begins with modulating a chirp\u27s slope by random binary data with a linear-down-slope chirp representing a 0, and a linear-up-slope chirp representing a 1. Each received symbol is demodulated by multiplying it with the exact linear-up-slope chirp and then integrating over a whole period (i.e., integrate and dump). This slope-detection technique reduces the need for the extensive recognition of the magnitude and/or the frequencies of the signal. Simulations demonstrate that CSK offers sturdy performance in the modeled ocean environment, even at very low signal-to-noise ratio (SNR). CSK is first tested using the fundamental communication channel, Additive White Gaussian Noise (AWGN) channel. Simulation results show excellent BER vs. SNR performance, implying CSK is a promising method. Further extensive analysis and simulations are performed to evaluate the quality of CSK in more realistic channels including Rayleigh amplitude fading channel and multipath

    Waymark in the Depths: Baseband Signal Transmission and OFDM in Underwater Acoustic Propagation Channel Models

    Get PDF
    In the intricate environment of underwater acoustic propagation, establishing reliable communication channels stands as a formidable challenge, primarily due to the medium's inherent properties, such as high path loss, multipath propagation, and time-varying channel characteristics. "Waymark in the Depths: Baseband Signal Transmission and OFDM in Underwater Acoustic Propagation Channel Models" presents an innovative exploration into enhancing underwater communication systems by leveraging advanced signal processing techniques and channel modeling strategies. At the core of this research lies the integration of Orthogonal Frequency Division Multiplexing (OFDM) with baseband signal transmission, aiming to mitigate the detrimental effects of the underwater acoustic environment on signal integrity and throughput. By dissecting the acoustic channel's unique attributes, the study devises a comprehensive channel model that encapsulates the dynamic nature of underwater acoustics, including the impact of temperature, salinity, and pressure on sound speed and signal dispersion. This model serves as a waymark, guiding the development of tailored OFDM techniques that are optimized for the underwater medium, focusing on maximizing spectral efficiency and minimizing error rates. The research meticulously examines the interplay between baseband signal processing and OFDM in this context, illustrating how their synergistic application can overcome the bandwidth limitations and frequency-selective fading characteristic of underwater channels. Through extensive simulation and experimental validation, the study demonstrates the feasibility of achieving high-speed, reliable underwater communication, highlighting significant improvements in data rates and link stability. Furthermore, the research delves into adaptive modulation schemes and coding strategies, optimized for the derived channel model, to bolster the robustness of the communication link against the unpredictable underwater environment. This pioneering work not only sheds light on the complexities of underwater acoustic signal transmission but also charts a path forward for the next generation of underwater communication systems. By pushing the boundaries of current technological capabilities and offering a solid theoretical foundation, this research contributes significantly to the field of underwater acoustics and opens new horizons for marine exploration, environmental monitoring, and submarine communication networks. Through its comprehensive analysis and innovative approaches, "Waymark in the Depths" not only addresses the technical challenges of underwater signal transmission but also lays down a crucial waymark for future endeavors in the uncharted territories of the ocean's depths

    Stochastic simulation of acoustic communication in turbulent shallow water

    Get PDF

    Asynchronous cooperative transmission in underwater acoustic networks

    Get PDF
    Multi-path fading, one of the key factors that deteriorate quality of service (QOS) in Underwater Acoustic Networks (UANs), is investigated under different underwater scenarios in this paper. To improve the Bit Error Rate (BER) performance, the techniques of cooperative diversities are applied. Considering realistic physical model and cooperative diversity techniques, two asynchronous forwarding schemes, namely Underwater Amplify-and-Forward (UAF) and Underwater Decode-and-Forward (UDF), are proposed and analyzed. The results show that both UDF and UAF have better performance than direct transmission. Furthermore, an adaptive and hybrid forwarding scheme is proposed based on UAF and UDF. © 2011 IEEE.published_or_final_versionThe 2011 IEEE Symposium on Underwater Technology (UT) and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC), Tokyo, Japan, 5-8 April 2011. In Proceedings of SSC'11, 2011, p. 1-
    • 

    corecore