62 research outputs found

    Reliable Cognitive Ultra Wideband Communication Systems Under Coexistence Constraints

    Get PDF
    RÉSUMÉ La croissance rapide des systèmes de communication sans fil et la rareté du spectre ont motivé les industries et les fournisseurs ouvrant dans le domaine de communication sans fil de développer des stratégies et des technologies de communication qui peuvent utiliser efficacement les ressources spectrales. La réutilisation pacifique du spectre sous-licence et sous-utilisé peut être une solution prometteuse pour certaines initiatives en cours telles que la communication mobile à haut débit, la communication machine-à-machine, et la connectivité WiFi. Un des plus gros facteurs qui empêche l'approche de cette réutilisation de fréquences est l'effet d'environnements bruyants sur les dispositifs coexistent dans la même bande de fréquence. Par conséquent, la demande pour une stratégie de coexistence pacifique entre les utilisateurs du spectre, des défis et des questions techniques qu'elle engêndre, motive notre recherche. Il est à noter que dans cette thèse, nous considérons un système pratique appelé MB-OFDM UWB (en anglais multiband orthogonal frequency division multiplexing ultra wideband) pour donner un aperçu pratique de ce concept. Pour atteindre cet objectif, d'abord nous examinons le problème d'interférence des utilisateurs secondaires sur les utilisateurs principaux. A cet effet, tenant compte d'un système secondaire OFDM, nous proposons des méthodes de mise en forme du spectre pour les applications de transmission à antennes simples et multiples. Nous présentons une technique débit-efficace nommée “Enhanced active interference cancellation (E - AIC)qui est en effet capable de créer des encoches ayant des caractéristiques flexibles. Afin de résoudre le problème de dépassement du spectre causé pas la technique classique-AIC, nous utilisons une approche multi-contraintes qui à son tour cause un problème multi-contrainte de minimisation (en anglais multi-constraint minimization problem, MCMP). Cependant, un nouvel algorithme itératif basé sur la technique SVD (en anglais singular value decomposition) est proposé, permettant ainsi de réduire la complexité de la solution de MCMP. Les résultats de simulation obtenus montrent que la technique E-AIC proposée fournit de meilleures performances en termes de suppression des lobes latéraux avec 0 dB de dépassement, moins de complexité de calcul et moins de perte de débit par rapport aux méthodes AIC précédentes. Quant aux antennes multiples, nous proposons deux nouvelles techniques AIC, qui utilisent l'idée principale des approches de sélection d'antennes d'émission (en anglais transmit antenna selection, TAS). Bien que les résultats montrent que les deux techniques permettent la création d'encoche identique, la technique per-tone TAS-AIC a la plus grande efficacité spectrale. Après avoir obtenu une emission sans interférence pour le système MB-OFDM UWB, nous analysons, modélisons et atténuons le bruit impulsif au récepteur MB-OFDM UWB. Pour ce faire, d'abord, nous proposons un cadre analytique qui décrit les principales caractéristiques d'interférence d'un système à ultra large bande et saut temporel (en anglais time-hopping UWB, TH-UWB) niveau de ces paramètres de signalisation. Les résultats montrent que la distribution d'interférence dépend fortement aux paramètres de saut temporel du système TH-UWB.----------ABSTRACT The rapid growth of wireless communication systems along with the radio spectrum's scarcity and regulatory considerations have put the onus on the wireless industries and service providers to develop wireless communication strategies and technologies that can efficiently utilize the spectral resources. Hence, peaceful reuse of underutilized licensed radio frequencies (by secondary users) can be a promising solution for some ongoing initiatives such as mobile broadband, machine-to-machine applications and WiFi connectivity. One of the biggest factors that prevents the spectrum reusing approach to effectively address the spectrum scarcity, is noisy environments result from coexistence of different devices in the same frequency band. Therefore, the request for a peaceful coexistence strategy between spectrum users, which leads to various challenges, and technical issues, motivates our research. It is worth noting that, in this thesis, we consider a practical system called multiband orthogonal frequency division multiplexing ultra wideband (MB-OFDM UWB) as an underlay system to provide a practical insight into this concept. However, all the obtained results and contributions are applicable to other OFDM-based communication systems. Towards this goal, we first investigate the problem of the interference from secondary users to the primary users. For this purpose, considering an OFDM-based secondary communication system, we propose spectrum-shaping methods for single and multiple transmit antennas applications. For single antenna scenario, we present a throughput-efficient enhanced active interference cancellation (E-AIC) technique, which is indeed capable of creating notches with flexible characteristics. In order to address the spectrum overshoot problem of conventional-AIC techniques, we employed a multi-constraint approach, which leads to a multi-constraint minimization problem (MCMP). Hence, a novel iterative singular value decomposition (SVD) based algorithm is proposed to reduce the complexity of the MCMP's solution. The obtained simulation results show that the proposed enhanced-AIC technique provides higher performance in terms of sidelobes suppression with 0 dB overshoot, less computational complexity and less throughput-loss compared to previous constrained-AIC methods. For multiple transmit antennas, we propose two novel AIC techniques employing main ideas behind bulk and per-tone transmit antenna selection (TAS) approaches. Simulation results show that although both techniques provide identical notch creation, the per-tone TAS-AIC technique has higher spectral efficiency

    System design and validation of multi-band OFDM wireless communications with multiple antennas

    Get PDF
    [no abstract

    OFDM Communication with Cooperative Relays

    Get PDF
    Signal fading due to multi-path propagation is one of the major impairments to meet the demands of next generation wireless networks for high data rate services. To mitigate the fading effects, time, frequency, and spatial diversity techniques or their hybrid can be used. Among different types of diversity techniques, spatial diversity is of special interest as is does not incur system losses in terms of delay and bandwidth efficiency.TelecommunicationsElectrical Engineering, Mathematics and Computer Scienc

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Energy Efficiency of Distributed Signal Processing in Wireless Networks: A Cross-Layer Analysis

    Get PDF
    In order to meet the growing mobile data demand, future wireless networks will be equipped with a mulitude of access points (APs). Besides the important implications for the energy consumption, the trend towards densification requires the development of decentralized and sustainable radio resource management techniques. It is critically important to understand how the distribution of signal processing operations affects the energy efficiency of wireless networks. In this paper, we provide a cross-layer framework to evaluate and compare the energy efficiency of wireless networks under different levels of distribution of the signal processing load: 1) hybrid, where the signal processing operations are shared between nodes and APs; 2) centralized, where signal processing is entirely implemented at the APs; and 3) fully distributed, where all operations are performed by the nodes. We find that in practical wireless networks, hybrid signal processing exhibits a significant energy efficiency gain over both centralized and fully distributed approaches

    Spectrum sensing algorithms and software-defined radio implementation for cognitive radio system

    Get PDF
    The scarcity of spectral resources in wireless communications, due to a fixed frequency allocation policy, is a strong limitation to the increasing demand for higher data rates. However, measurements showed that a large part of frequency channels are underutilized or almost unoccupied. The cognitive radio paradigm arises as a tempting solution to the spectral congestion problem. A cognitive radio must be able to identify transmission opportunities in unused channels and to avoid generating harmful interference with the licensed primary users. Its key enabling technology is the spectrum sensing unit, whose ultimate goal consists in providing an indication whether a primary transmission is taking place in the observed channel. Such indication is determined as the result of a binary hypothesis testing experiment wherein null hypothesis (alternate hypothesis) corresponds to the absence (presence) of the primary signal. The first parts of this thesis describes the spectrum sensing problem and presents some of the best performing detection techniques. Energy Detection and multi-antenna Eigenvalue-Based Detection algorithms are considered. Important aspects are taken into account, like the impact of noise estimation or the effect of primary user traffic. The performance of each detector is assessed in terms of false alarm probability and detection probability. In most experimental research, cognitive radio techniques are deployed in software-defined radio systems, radio transceivers that allow operating parameters (like modulation type, bandwidth, output power, etc.) to be set or altered by software.In the second part of the thesis, we introduce the software-defined radio concept. Then, we focus on the implementation of Energy Detection and Eigenvalue-Based Detection algorithms: first, the used software platform, GNU Radio, is described, secondly, the implementation of a parallel energy detector and a multi-antenna eigenbased detector is illustrated and details on the used methodologies are given. Finally, we present the deployed experimental cognitive testbeds and the used radio peripherals. The obtained algorithmic results along with the software-defined radio implementation may offer a set of tools able to create a realistic cognitive radio system with real-time spectrum sensing capabilities

    Low-Complexity Algorithms for Channel Estimation in Optimised Pilot-Assisted Wireless OFDM Systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has recently become a dominant transmission technology considered for the next generation fixed and mobile broadband wireless communication systems. OFDM has an advantage of lessening the severe effects of the frequency-selective (multipath) fading due to the band splitting into relatively flat fading subchannels, and allows for low-complexity transceiver implementation based on the fast Fourier transform algorithms. Combining OFDM modulation with multilevel frequency-domain symbol mapping (e.g., QAM) and spatial multiplexing (SM) over the multiple-input multiple-output (MIMO) channels, can theoretically achieve near Shannon capacity of the communication link. However, the high-rate and spectrumefficient system implementation requires coherent detection at the receiving end that is possible only when accurate channel state information (CSI) is available. Since in practice, the response of the wireless channel is unknown and is subject to random variation with time, the receiver typically employs a channel estimator for CSI acquisition. The channel response information retrieved by the estimator is then used by the data detector and can also be fed back to the transmitter by means of in-band or out-of-band signalling, so the latter could adapt power loading, modulation and coding parameters according to the channel conditions. Thus, design of an accurate and robust channel estimator is a crucial requirement for reliable communication through the channel, which is selective in time and frequency. In a MIMO configuration, a separate channel estimator has to be associated with each transmit/receive antenna pair, making the estimation algorithm complexity a primary concern. Pilot-assisted methods, relying on the insertion of reference symbols in certain frequencies and time slots, have been found attractive for identification of the doubly-selective radio channels from both the complexity and performance standpoint. In this dissertation, a family of the reduced-complexity estimators for the single and multiple-antenna OFDM systems is developed. The estimators are based on the transform-domain processing and have the same order of computational complexity, irrespective of the number of pilot subcarriers and their positioning. The common estimator structure represents a cascade of successive small-dimension filtering modules. The number of modules, as well as their order inside the cascade, is determined by the class of the estimator (one or two-dimensional) and availability of the channel statistics (correlation and signal-to-noise power ratio). For fine precision estimation in the multipath channels with statistics not known a priori, we propose recursive design of the filtering modules. Simulation results show that in the steady state, performance of the recursive estimators approaches that of their theoretical counterparts, which are optimal in the minimum mean square error (MMSE) sense. In contrast to the majority of the channel estimators developed so far, our modular-type architectures are suitable for the reconfigurable OFDM transceivers where the actual channel conditions influence the decision of what class of filtering algorithm to use, and how to allot pilot subcarrier positions in the band. In the pilot-assisted transmissions, channel estimation and detection are performed separately from each other over the distinct subcarrier sets. The estimator output is used only to construct the detector transform, but not as the detector input. Since performance of both channel estimation and detection depends on the signal-to-noise power vi ratio (SNR) at the corresponding subcarriers, there is a dilemma of the optimal power allocation between the data and the pilot symbols as these are conflicting requirements under the total transmit power constraint. The problem is exacerbated by the variety of channel estimators. Each kind of estimation algorithm is characterised by its own SNR gain, which in general can vary depending on the channel correlation. In this dissertation, we optimise pilot-data power allocation for the case of developed low-complexity one and two-dimensional MMSE channel estimators. The resultant contribution is manifested by the closed-form analytical expressions of the upper bound (suboptimal approximate value) on the optimal pilot-to-data power ratio (PDR) as a function of a number of design parameters (number of subcarriers, number of pilots, number of transmit antennas, effective order of the channel model, maximum Doppler shift, SNR, etc.). The resultant PDR equations can be applied to the MIMO-OFDM systems with arbitrary arrangement of the pilot subcarriers, operating in an arbitrary multipath fading channel. These properties and relatively simple functional representation of the derived analytical PDR expressions are designated to alleviate the challenging task of on-the-fly optimisation of the adaptive SM-MIMO-OFDM system, which is capable of adjusting transmit signal configuration (e.g., block length, number of pilot subcarriers or antennas) according to the established channel conditions

    A scalable real-time processing chain for radar exploiting illuminators of opportunity

    Get PDF
    Includes bibliographical references.This thesis details the design of a processing chain and system software for a commensal radar system, that is, a radar that makes use of illuminators of opportunity to provide the transmitted waveform. The stages of data acquisition from receiver back-end, direct path interference and clutter suppression, range/Doppler processing and target detection are described and targeted to general purpose commercial off-the-shelf computing hardware. A detailed low level design of such a processing chain for commensal radar which includes both processing stages and processing stage interactions has, to date, not been presented in the Literature. Furthermore, a novel deployment configuration for a networked multi-site FM broadcast band commensal radar system is presented in which the reference and surveillance channels are record at separate locations
    • …
    corecore