3 research outputs found

    Design of a Mobile Underwater Charging System

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are extremely capable vehicles for numerous ocean related missions. AUVs are energy limited, resulting in short mission endurance on the scale of hours to days. Underwater Gliders (UGs) are able to operate on the order of months to years by using nontraditional propulsion methods. UGs, however, are unable to perform missions requiring high speed or direct forward motion due to the nature of their buoyancy driven motion. This work reviews the current state of the art in recharging AUVs and offers an underwater recharging network concept at a significantly reduced cost to traditional methods. The solution includes the design of a UG capable of serving as charge carrying agent that couples with and charges AUVs autonomously. The vehicle design is built on the work done previously at the Nonlinear and Autonomous Systems Lab on the development of ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering). The ROUGHIE2 design is a rethinking of the original ROUGHIE capabilities to serve as a mobile charger by increasing depth rating, endurance, and payload capacity. The recharging concept presented will be easy to adapt to many different AUVs and UGs making this technology universal to small AUVs

    Effective Turning Motion Control of Internally Actuated Autonomous Underwater Vehicles

    Get PDF
    This paper presents a novel roll mechanism and an efficient control strategy for internally actuated autonomous underwater vehicles (AUVs). The developed control algorithms are tested on Michigan Tech’s custom research glider, ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering), in a controlled environment. The ROUGHIE’s design parameters and operational constraints were driven by its requirement to be man portable, expandable, and maneuverable in shallow water. As an underwater glider, the ROUGHIE is underactuated with direct control of only depth, pitch, and roll. A switching control method is implemented on the ROUGHIE to improve its maneuverability, enabling smooth transitions between different motion patterns. This approach uses multiple feedforward-feedback controllers. Different aspects of the roll mechanism and the effectiveness of the controller on turning motion are discussed based on experimental results. The results illustrate that the ROUGHIE is capable of achieving tight turns with a radius of 2.4 meters in less than 3 meters of water, or one order of magnitude improvement on existing internally actuated platforms. The developed roll mechanism is not specific to underwater gliders and is applicable to all AUVs, especially at lower speeds and in shallower water when external rudder is less effective in maneuvering the vehicle

    A multi-level motion controller for low-cost Underwater Gliders

    No full text
    An underwater glider named ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering) is designed and manufactured to provide a test platform and framework for experimental underwater automation. This paper presents an efficient multi-level motion controller that can be used to enhance underwater glider control systems or easily modified for additional sensing, computing, or other requirements for advanced automation design testing. The ultimate goal is to have a fleet of modular and inexpensive test platforms for addressing the issues that currently limit the use of autonomous underwater vehicles (AUVs). Producing a low-cost vehicle with maneuvering capabilities and a straightforward expansion path will permit easy experimentation and testing of different approaches to improve underwater automation
    corecore