3 research outputs found

    Daily streamflow simulation based on the improved machine learning method

    Get PDF
    Kan, G., He, X., Ding, L., Li, J., Hong, Y., Ren, M., Lei, T., Liang, K., Zuo, D., & Huang, P. (March-April, 2017). Daily streamflow simulation based on the improved machine learning method. Water Technology and Sciences (in Spanish), 8(2), 51-60. Daily streamflow simulation has usually been implemented by conceptual or distributed hydrological models. Nowadays, hydrological data, which can be easily obtained from automatic measuring systems, are more than enough. Therefore, machine learning turns into an effective and popular tool which is highly suited for the streamflow simulation task. In this paper, we propose an improved machine learning method referred to as PKEK model based on the previously proposed NU-PEK model for the purpose of generating daily streamflow simulation results with better accuracy and stability. Comparison results between the PKEK model and the NU-PEK model indicated that the improved model has better accuracy and stability and has a bright application prospect for daily streamflow simulation tasks

    A calculation model of charge and discharge capacity of electric vehicle cluster based on trip chain

    Get PDF
    The rapid response characteristics and high-speed growth of electric vehicles (EVs) demonstrate its potential to provide auxiliary frequency regulation services for independent system operators through vehicle-to-grid (V2G). However, due to the spatiotemporal random dynamics of travel behavior, it is challenging to evaluate the ability of EV cluster to provide ancillary services under the premise of reaching the expected state of charge (SOC) level. To address this issue, a novel calculation model of charge and discharge capacity of EV cluster based on trip chain with excellent parallel computing performance is presented in this work. Following the introduction of the characteristic variables of the proposed trip chain model, the user’s continuous travel behavior in a time scale of several weeks is simulated. In particular, a bidirectional V2G scheduling strategy based on the five-zone map is designed to guide the charging and discharging behavior of EVs, where the expected SOC levels are guaranteed. The results of a 3-week travel simulation verify the effectiveness of the presented model in coordinating the V2G scheme and calculating the charge and discharge capacity of the EV cluster
    corecore