1,988 research outputs found

    Joint Channel Selection and Power Control in Infrastructureless Wireless Networks: A Multi-Player Multi-Armed Bandit Framework

    Full text link
    This paper deals with the problem of efficient resource allocation in dynamic infrastructureless wireless networks. Assuming a reactive interference-limited scenario, each transmitter is allowed to select one frequency channel (from a common pool) together with a power level at each transmission trial; hence, for all transmitters, not only the fading gain, but also the number of interfering transmissions and their transmit powers are varying over time. Due to the absence of a central controller and time-varying network characteristics, it is highly inefficient for transmitters to acquire global channel and network knowledge. Therefore a reasonable assumption is that transmitters have no knowledge of fading gains, interference, and network topology. Each transmitting node selfishly aims at maximizing its average reward (or minimizing its average cost), which is a function of the action of that specific transmitter as well as those of all other transmitters. This scenario is modeled as a multi-player multi-armed adversarial bandit game, in which multiple players receive an a priori unknown reward with an arbitrarily time-varying distribution by sequentially pulling an arm, selected from a known and finite set of arms. Since players do not know the arm with the highest average reward in advance, they attempt to minimize their so-called regret, determined by the set of players' actions, while attempting to achieve equilibrium in some sense. To this end, we design in this paper two joint power level and channel selection strategies. We prove that the gap between the average reward achieved by our approaches and that based on the best fixed strategy converges to zero asymptotically. Moreover, the empirical joint frequencies of the game converge to the set of correlated equilibria. We further characterize this set for two special cases of our designed game

    Channel Selection for Network-assisted D2D Communication via No-Regret Bandit Learning with Calibrated Forecasting

    Full text link
    We consider the distributed channel selection problem in the context of device-to-device (D2D) communication as an underlay to a cellular network. Underlaid D2D users communicate directly by utilizing the cellular spectrum but their decisions are not governed by any centralized controller. Selfish D2D users that compete for access to the resources construct a distributed system, where the transmission performance depends on channel availability and quality. This information, however, is difficult to acquire. Moreover, the adverse effects of D2D users on cellular transmissions should be minimized. In order to overcome these limitations, we propose a network-assisted distributed channel selection approach in which D2D users are only allowed to use vacant cellular channels. This scenario is modeled as a multi-player multi-armed bandit game with side information, for which a distributed algorithmic solution is proposed. The solution is a combination of no-regret learning and calibrated forecasting, and can be applied to a broad class of multi-player stochastic learning problems, in addition to the formulated channel selection problem. Analytically, it is established that this approach not only yields vanishing regret (in comparison to the global optimal solution), but also guarantees that the empirical joint frequencies of the game converge to the set of correlated equilibria.Comment: 31 pages (one column), 9 figure

    Influence Maximization with Bandits

    Full text link
    We consider the problem of \emph{influence maximization}, the problem of maximizing the number of people that become aware of a product by finding the `best' set of `seed' users to expose the product to. Most prior work on this topic assumes that we know the probability of each user influencing each other user, or we have data that lets us estimate these influences. However, this information is typically not initially available or is difficult to obtain. To avoid this assumption, we adopt a combinatorial multi-armed bandit paradigm that estimates the influence probabilities as we sequentially try different seed sets. We establish bounds on the performance of this procedure under the existing edge-level feedback as well as a novel and more realistic node-level feedback. Beyond our theoretical results, we describe a practical implementation and experimentally demonstrate its efficiency and effectiveness on four real datasets.Comment: 12 page

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Sequential Selection of Correlated Ads by POMDPs

    Full text link
    Online advertising has become a key source of revenue for both web search engines and online publishers. For them, the ability of allocating right ads to right webpages is critical because any mismatched ads would not only harm web users' satisfactions but also lower the ad income. In this paper, we study how online publishers could optimally select ads to maximize their ad incomes over time. The conventional offline, content-based matching between webpages and ads is a fine start but cannot solve the problem completely because good matching does not necessarily lead to good payoff. Moreover, with the limited display impressions, we need to balance the need of selecting ads to learn true ad payoffs (exploration) with that of allocating ads to generate high immediate payoffs based on the current belief (exploitation). In this paper, we address the problem by employing Partially observable Markov decision processes (POMDPs) and discuss how to utilize the correlation of ads to improve the efficiency of the exploration and increase ad incomes in a long run. Our mathematical derivation shows that the belief states of correlated ads can be naturally updated using a formula similar to collaborative filtering. To test our model, a real world ad dataset from a major search engine is collected and categorized. Experimenting over the data, we provide an analyse of the effect of the underlying parameters, and demonstrate that our algorithms significantly outperform other strong baselines
    corecore