11,477 research outputs found

    A Molecular Implementation of the Least Mean Squares Estimator

    Full text link
    In order to function reliably, synthetic molecular circuits require mechanisms that allow them to adapt to environmental disturbances. Least mean squares (LMS) schemes, such as commonly encountered in signal processing and control, provide a powerful means to accomplish that goal. In this paper we show how the traditional LMS algorithm can be implemented at the molecular level using only a few elementary biomolecular reactions. We demonstrate our approach using several simulation studies and discuss its relevance to synthetic biology.Comment: Molecular circuits, synthetic biology, least mean squares estimator, adaptive system

    Structural Variability from Noisy Tomographic Projections

    Full text link
    In cryo-electron microscopy, the 3D electric potentials of an ensemble of molecules are projected along arbitrary viewing directions to yield noisy 2D images. The volume maps representing these potentials typically exhibit a great deal of structural variability, which is described by their 3D covariance matrix. Typically, this covariance matrix is approximately low-rank and can be used to cluster the volumes or estimate the intrinsic geometry of the conformation space. We formulate the estimation of this covariance matrix as a linear inverse problem, yielding a consistent least-squares estimator. For nn images of size NN-by-NN pixels, we propose an algorithm for calculating this covariance estimator with computational complexity O(nN4+κN6logN)\mathcal{O}(nN^4+\sqrt{\kappa}N^6 \log N), where the condition number κ\kappa is empirically in the range 1010--200200. Its efficiency relies on the observation that the normal equations are equivalent to a deconvolution problem in 6D. This is then solved by the conjugate gradient method with an appropriate circulant preconditioner. The result is the first computationally efficient algorithm for consistent estimation of 3D covariance from noisy projections. It also compares favorably in runtime with respect to previously proposed non-consistent estimators. Motivated by the recent success of eigenvalue shrinkage procedures for high-dimensional covariance matrices, we introduce a shrinkage procedure that improves accuracy at lower signal-to-noise ratios. We evaluate our methods on simulated datasets and achieve classification results comparable to state-of-the-art methods in shorter running time. We also present results on clustering volumes in an experimental dataset, illustrating the power of the proposed algorithm for practical determination of structural variability.Comment: 52 pages, 11 figure

    Lecture notes on ridge regression

    Full text link
    The linear regression model cannot be fitted to high-dimensional data, as the high-dimensionality brings about empirical non-identifiability. Penalized regression overcomes this non-identifiability by augmentation of the loss function by a penalty (i.e. a function of regression coefficients). The ridge penalty is the sum of squared regression coefficients, giving rise to ridge regression. Here many aspect of ridge regression are reviewed e.g. moments, mean squared error, its equivalence to constrained estimation, and its relation to Bayesian regression. Finally, its behaviour and use are illustrated in simulation and on omics data. Subsequently, ridge regression is generalized to allow for a more general penalty. The ridge penalization framework is then translated to logistic regression and its properties are shown to carry over. To contrast ridge penalized estimation, the final chapter introduces its lasso counterpart

    Zero-Variance Zero-Bias Principle for Observables in quantum Monte Carlo: Application to Forces

    Full text link
    A simple and stable method for computing accurate expectation values of observable with Variational Monte Carlo (VMC) or Diffusion Monte Carlo (DMC) algorithms is presented. The basic idea consists in replacing the usual ``bare'' estimator associated with the observable by an improved or ``renormalized'' estimator. Using this estimator more accurate averages are obtained: Not only the statistical fluctuations are reduced but also the systematic error (bias) associated with the approximate VMC or (fixed-node) DMC probability densities. It is shown that improved estimators obey a Zero-Variance Zero-Bias (ZVZB) property similar to the usual Zero-Variance Zero-Bias property of the energy with the local energy as improved estimator. Using this property improved estimators can be optimized and the resulting accuracy on expectation values may reach the remarkable accuracy obtained for total energies. As an important example, we present the application of our formalism to the computation of forces in molecular systems. Calculations of the entire force curve of the H2_2,LiH, and Li2_2 molecules are presented. Spectroscopic constants ReR_e (equilibrium distance) and ωe\omega_e (harmonic frequency) are also computed. The equilibrium distances are obtained with a relative error smaller than 1%, while the harmonic frequencies are computed with an error of about 10%
    corecore