3 research outputs found

    Design and Control of Omni-directional aerial robot

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2016. 2. ์ด๋™์ค€.์šฐ๋ฆฌ๋Š” ๋น„๋Œ€์นญ์ ์ธ ๋ถ„์‚ฐ๋œ ๋ฉ€ํ‹ฐ ๋กœํ„ฐ ๋ฐฐ์น˜๋กœ SE(3)์—์„œ fully-actuatedํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ๋น„ํ–‰๊ณผ ํšŒ์ „์ด ๋™์‹œ์— ๊ฐ€๋Šฅํ•˜์—ฌ ์ผ๋ฐ˜์ ์ธ ๋น„ํ–‰๋กœ๋ด‡์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” under-actuationํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณต ํ•  ์ˆ˜ ์žˆ๋Š” ์ „๋ฐฉํ–ฅ ๋น„ํ–‰ ๋กœ๋ด‡์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋””์ž์ธ์˜ ๋น„ํ–‰ ๋กœ๋ด‡์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ์šฐ๋ฆฌ๋Š” ๊ฐ ๋กœํ„ฐ๋“ค ์‚ฌ์ด์˜ ๊ณต๊ธฐ์—ญํ•™์ ์ธ ๊ฐ„์„ญ์„ ์ตœ์†Œํ™”ํ•จ๊ณผ ๋™์‹œ์— ์ตœ๋Œ€์˜ ์ œ์–ด ๋ Œ์น˜๋ฅผ ์ƒ์ˆ˜ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ๋กœํ„ฐ ๋ฐฐ์น˜์˜ ์ตœ์ ํ™” ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” SE(3)์—์„œ ODAR ์‹œ์Šคํ…œ์˜ ๋™์—ญํ•™ ๋ชจ๋ธ๋ง์„ ์ œ์‹œํ•˜๊ณ  ๋ณ‘์ง„์šด๋™๊ณผ ํšŒ์ „์šด๋™์˜ ์ œ์–ด ๋””์ž์ธ์„ ์ง„ํ–‰ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋˜ํ•œ ODAR ์‹œ์Šคํ…œ์„ ์‹ค์ œ ์ œ์ž‘ํ•˜๊ณ  ๊ทธ๊ฒƒ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋น„ํ–‰๋กœ๋ด‡๊ณผ๋Š” ์™„์ „ํžˆ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์œผ๋กœ์„œ ์šฐ๋ฆฌ๋Š” ODAR ์‹œ์Šคํ…œ์ด ์ „๋ฐฉํ–ฅ ๋ Œ์น˜ ์ƒ์„ฑ์ด ์ค‘์š”ํ•œ ํ•ญ๊ณต ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋‚˜ ๊ฐ€์ƒํ˜„์‹ค ๋ Œ๋”๋ง 3D ํ™˜๊ฒฝ๊ตฌ์ถ•์„ ์œ„ํ•œ ์ „๋ฐฉํ–ฅ ๊ตฌ๋™์—์„œ์˜ ์ดฌ์˜ ์„ฑ๋Šฅ์„ ์ง€๋‹ ์ˆ˜ ์žˆ๋Š” ํ•ญ๊ณต ์ดฌ์˜ ์—ญํ• ์„ ์ˆ˜ํ–‰ ํ•  ๊ฒƒ์œผ๋กœ ๋ฏฟ๋Š”๋‹ค.We propose a novel aerial robot system, Omni-Directional Aerial Robot (ODAR), which is fully-actuated in SE(3) with asymmetrically distributed multiple rotors and can fly and rotate at the same time, thereby, overcoming the well-known under-actuation problem of conventional multi-rotor aerial robots (or simply drones). We first perform optimization of rotor distribution to maximize control wrench generation in SE(3) while minimizing aero-dynamic interference among the rotors. We present dynamics modeling of the ODAR system in SE(3) and simultaneous translation / orientation control design. We also implement a ODAR system and experimentally validate its performance. Being completely different from the conventional drone, we believe this ODAR system would be promising for such applications as aerial manipulation, where omni-directional wrench generation is important, and also as aerial photography, where an ability to taking photos in omni-direction is desired for 3D environment reconstruction for VR scene rendering.1 ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋™๊ธฐ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ ์„ฑ๊ณผ 4 2 ์‹œ์Šคํ…œ ๋””์ž์ธ ๋ฐ ์ œ์–ด ์„ค๊ณ„ 6 2.1 ์‹œ์Šคํ…œ ๋””์ž์ธ 6 2.2 ์ œ์–ด ์„ค๊ณ„ 16 3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 21 3.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ค€๋น„ 21 3.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ 24 4 ์‹œ์Šคํ…œ ์ œ์ž‘ 27 4.1 ์‹œ์Šคํ…œ ์ œ์ž‘ ์ค€๋น„ 27 4.2 ์‹œ์Šคํ…œ ์ œ์ž‘ ๊ตฌ์„ฑํ’ˆ 28 4.3 ์‹œ์Šคํ…œ ์ œ์ž‘ ํ†ตํ•ฉ 34 5 ์‹คํ—˜ 36 5.1 ์‹คํ—˜ ์ค€๋น„ 36 5.2 ์‹คํ—˜ ๊ฒฐ๊ณผ 38 5.2.1 ์›ํ˜• ๊ถค์  ์ถ”์  39 5.2.2 3D ์˜์ƒ์ดฌ์˜ ๋ชจ์…˜ 42 5.2.3 ์ˆ˜์ง ๊ตฌ๋™ ์ž‘์—… 45 6 ๊ฒฐ๋ก  49 6.1 ๊ฒฐ๋ก  49 6.2 ํ–ฅํ›„ ๊ณผ์ œ 50 ์ฐธ๊ณ ๋ฌธํ—Œ 52 Abstract 57Maste

    ๊ฒฐํ•ฉ๋œ ์ฟผ๋“œ๋กœํ„ฐ ๋ฌด์ธ๋น„ํ–‰๋กœ๋ด‡์˜ ๋ชจ๋ธ๋ง ๋ฐ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2015. 2. ์ด๋™์ค€.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๋Œ€์˜ ์ฟผ๋“œ๋กœํ„ฐ ๋ฌด์ธ๋น„ํ–‰๋กœ๋ด‡์„ ๋น„์Šค๋“ฌํžˆ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ์„ ์ œ์‹œํ•œ๋‹ค. ๋ณธ ์‹œ์Šคํ…œ์€ ๊ธฐ์กด์˜ ํ•œ ๋Œ€์˜ ์ฟผ๋“œ๋กœํ„ฐ๊ฐ€ ๊ฐ€์ง€๋Š” ๋ถ€์กฑ๊ตฌ๋™(underactuation)์ ์ธ ์ธก๋ฉด๊ณผ ๋‚ฎ์€ ์ ์žฌํ•˜์ค‘์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. ์ฆ‰, ๊ธฐ์กด์— ์ฟผ๋“œ๋กœํ„ฐ๊ฐ€ 4๊ฐœ์˜ ๊ตฌ๋™ ์ž์œ ๋„๋ฅผ ๊ฐ–๋Š”๋ฐ ๋ฐ˜ํ•ด ๋ณธ ์‹œ์Šคํ…œ์€ 5๊ฐœ์˜ ๊ตฌ๋™ ์ž์œ ๋„๋ฅผ ๊ฐ€์ ธ ํ•œ ์ฐจ์›์˜ ์ œ์–ด๊ฐ€ ์ถ”๊ฐ€๋กœ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ด๋Š” ๋‘ ์ฟผ๋“œ๋กœํ„ฐ๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ์˜ ํ”ผ์น˜ (pitch) ๋™์ž‘์— ๋Œ€ํ•œ ์ž์œ ๋„๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ณต์ค‘ ๋„๊ตฌ์กฐ์ž‘ (aerial tool operation) ๋“ฑ๊ณผ ๊ฐ™์€ ์‹ค์ œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ๋•Œ ๋งค์šฐ ์œ ์šฉํ•˜๊ฒŒ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ œ์‹œ๋œ ๋น„์Šค๋“ฌํžˆ ๊ฒฐํ•ฉํ•œ ์ฟผ๋“œ๋กœํ„ฐ ๋ฌด์ธ๋น„ํ–‰๋กœ๋ด‡ ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ๋™์—ญํ•™ ๋ฐ ์ถ”๋ ฅ ๊ด€๊ณ„์‹์„ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ถค์  ์ถ”์  (trajectory tracking) ์„ ์œ„ํ•ด ๋ฐฑ์Šคํ…ํ•‘ ์ œ์–ด๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ์ œ์–ด๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐ ๋กœํ„ฐ์—์„œ์˜ ์ถ”๋ ฅ๋“ค์ด ํ•ญ์ƒ ์–‘์˜ ๊ฐ’์„ ๊ฐ€์ ธ์•ผํ•˜๋Š” ์ œ์•ฝ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ• ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๋ณธ ์‹œ์Šคํ…œ๊ณผ ์ œ์–ด๊ธฐ๋ฅผ ๊ฒ€์ฆํ•˜์˜€๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค.In this thesis, we introduce a novel concept of asymmetrically coupled quadrotor UAVs (Unmanned Aerial Vehicles) system. The proposed system is composed with two quadrotor UAVs that are asymmetrically coupled with each other. This coupled system has advantages in the sense of overcoming under-actuation and payload problems compared to single conventional quadrotor UAV. That is, the proposed system has 5 actuation DOFs while single quadrotor UAV has 4 actuation DOFs, where the additional actuation can be exploited for decoupling translation and rotation in a certain direction. This feature increases the versatility and is useful for real tasks such as aerial tool operation. We first model the coupled quadrotor system and design a controller which is based on the backstepping control and optimization to guarantee positiveness of thrusts. Simulation results are presented to validate the theory and to demonstrate the advantages of the proposed system.1 Introduction 1 1.1 Motivation and Objectives 1 1.2 State of the Art 3 1.3 Contribution of this Work 4 2 System Modeling 6 2.1 Asymmetrically Coupled Quadrotor UAVs 6 2.2 Dynamics of Asymmetrically Coupled Quadrotor UAVs 9 2.3 Thrust Relationship 13 3 Control Design 16 3.1 Backstepping Control 17 3.2 Positive Thrust Constraint 23 4 Simulation 26 4.1 Simulation Scheme 26 4.2 Simulation Results 28 4.2.1 Trajectory tracking 29 4.2.2 Translation along x-axis without rotation 31 4.2.3 Rotation without translation 35 4.2.4 Combination case 37 4.2.5 Tool operation example 40 5 Conclusion and Future Work 44 5.1 Conclusion 44 5.2 Future Work 45Maste

    A Modular Aerial Vehicle with Redundant Actuation

    No full text
    Abstract-This work presents the design and experimental validation of a control strategy for an innovative modular aerial vehicle characterized by redundant actuation. For this class of aircraft, the distinguishing feature of the proposed design -which sets it apart from standard vertical take-off and landing (VTOL) under-actuated configurations such as helicopters, ducted-fan tail-sitters or multi-rotors -is that the input redundancy can be employed to improve the dynamical properties of the system. In particular, the vehicle performance can be enhanced in certain applications that benefit from a larger number of degrees of freedom being simultaneously controlled. A control strategy is proposed which is capable of globally stabilizing the dynamics of this class of vehicles along a desired trajectory. The methodology is validated by means of experiments carried out on a special prototype obtained by rigidly connecting two ducted-fan tail-sitter UAVs
    corecore