1,498 research outputs found

    Non-modal analysis of spectral element methods: Towards accurate and robust large-eddy simulations

    Get PDF
    We introduce a \textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so that it can give critical insights on two questions: (i) Why do spectral element methods suffer from stability issues in under-resolved computations of nonlinear problems? And, (ii) why do they successfully predict under-resolved turbulent flows even without a subgrid-scale model? The answer to these two questions can in turn provide crucial guidelines to construct more robust and accurate schemes for complex under-resolved flows, commonly found in industrial applications. For illustration purposes, this analysis technique is applied to the hybridized discontinuous Galerkin methods as representatives of spectral element methods. The effect of the polynomial order, the upwinding parameter and the P\'eclet number on the so-called \textit{short-term diffusion} of the scheme are investigated. From a purely non-modal analysis point of view, polynomial orders between 22 and 44 with standard upwinding are well suited for under-resolved turbulence simulations. For lower polynomial orders, diffusion is introduced in scales that are much larger than the grid resolution. For higher polynomial orders, as well as for strong under/over-upwinding, robustness issues can be expected. The non-modal analysis results are then tested against under-resolved turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While devised in the linear setting, our non-modal analysis succeeds to predict the behavior of the scheme in the nonlinear problems considered

    Variational multiscale reinforcement learning for discovering reduced order closure models of nonlinear spatiotemporal transport systems

    Get PDF
    A central challenge in the computational modeling and simulation of a multitude of science applications is to achieve robust and accurate closures for their coarse-grained representations due to underlying highly nonlinear multiscale interactions. These closure models are common in many nonlinear spatiotemporal systems to account for losses due to reduced order representations, including many transport phenomena in fluids. Previous data-driven closure modeling efforts have mostly focused on supervised learning approaches using high fidelity simulation data. On the other hand, reinforcement learning (RL) is a powerful yet relatively uncharted method in spatiotemporally extended systems. In this study, we put forth a modular dynamic closure modeling and discovery framework to stabilize the Galerkin projection based reduced order models that may arise in many nonlinear spatiotemporal dynamical systems with quadratic nonlinearity. However, a key element in creating a robust RL agent is to introduce a feasible reward function, which can be constituted of any difference metrics between the RL model and high fidelity simulation data. First, we introduce a multi-modal RL to discover mode-dependant closure policies that utilize the high fidelity data in rewarding our RL agent. We then formulate a variational multiscale RL (VMRL) approach to discover closure models without requiring access to the high fidelity data in designing the reward function. Specifically, our chief innovation is to leverage variational multiscale formalism to quantify the difference between modal interactions in Galerkin systems. Our results in simulating the viscous Burgers equation indicate that the proposed VMRL method leads to robust and accurate closure parameterizations, and it may potentially be used to discover scale-aware closure models for complex dynamical systems.publishedVersio

    On the performance of a high-order multiscale DG approach to LES at increasing Reynolds number

    Get PDF
    The variational multiscale (VMS) approach based on a high-order discontinuous Galerkin (DG) method is used to perform LES of the sub-critical flow past a circular cylinder at Reynolds 3 900, 20 000 and 140 000. The effect of the numerical flux function on the quality of the LES solutions is also studied in the context of very coarse discretizations of the TGV configuration at Re = 20 000. The potential of using p-adaption in combination with DG-VMS is illustrated for the cylinder flow at Re = 140 000 by considering a non-uniform distribution of the polynomial degree based on a recently developed error estimation strategy. The results from these tests demonstrate the robustness of the DG-VMS approach with increasing Reynolds number on a highly curved geometrical configuration

    Turbulent jet simulation using high-order DG methods for aeroacoustics analysis

    Full text link
    In this work, a high-order discontinuous Galerkin (DG) method is used to perform a large-eddy simulation (LES) of a subsonic isothermal jet at high Reynolds number Re D = 10^6 on a fully un-structured mesh. Its radiated acoustic field is computed using the Ffowcs Williams and Hawkings formulation. In order to assess the accuracy of the DG method, the simulation results are compared to experimental measurements and a reference simulation based on a finite volume method. The comparisons are made on the flow quantities (mean, rms and spectra) and pressure far field (rms and spectra)
    • …
    corecore