1,294 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Energy-Efficient Self-Organization Protocols for Sensor Networks

    Get PDF
    A Wireless Sensor Network (WSN, for short) consists of a large number of very small sensor devices deployed in an area of interest for gathering and delivery information. The fundamental goal of a WSN is to produce, over an extended period of time, global information from local data obtained by individual sensors. The WSN technology will have a significant impact on a wide array of applications on the efficiency of many civilian and military applications including combat field surveillance, intrusion detection, disaster management among many others. The basic management problem in the WSN is to balance the utility of the activity in the network against the cost incurred by the network resources to perform this activity. Since the sensors are battery powered and it is impossible to change or recharge batteries after the sensors are deployed, promoting system longevity becomes one of the most important design goals instead of QoS provisioning and bandwidth efficiency. On the other hand the self-organization ability is essential for the WSN due to the fact that the sensors are randomly deployed and they work unattended. We developed a self-organization protocol, which creates a multi-hop communication infrastructure capable of utilizing the limited resources of sensors in an adaptive and efficient way. The resulting general-purpose infrastructure is robust, easy to maintain and adapts well to various application needs. Important by-products of our infrastructure include: (1) Energy efficiency: in order to save energy and to extend the longevity of the WSN sensors, which are in sleep mode most of the time. (2) Adaptivity: the infrastructure is adaptive to network size, network topology, network density and application requirement. (3) Robustness: the degree to which the infrastructure is robust and resilient. Analytical results and simulation confirmed that our self-organization protocol has a number of desirable properties and compared favorably with the leading protocols in the literature

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Energy-efficient MAC protocol for wireless sensor networks

    Get PDF
    A Wireless Sensor Network (WSN) is a collection of tiny devices called sensor nodes which are deployed in an area to be monitored. Each node has one or more sensors with which they can measure the characteristics of their surroundings. In a typical WSN, the data gathered by each node is sent wirelessly through the network from one node to the next towards a central base station. Each node typically has a very limited energy supply. Therefore, in order for WSNs to have acceptable lifetimes, energy efficiency is a design goal that is of utmost importance and must be kept in mind at all levels of a WSN system. The main consumer of energy on a node is the wireless transceiver and therefore, the communications that occur between nodes should be carefully controlled so as not to waste energy. The Medium Access Control (MAC) protocol is directly in charge of managing the transceiver of a node. It determines when the transceiver is on/off and synchronizes the data exchanges among neighbouring nodes so as to prevent collisions etc., enabling useful communications to occur. The MAC protocol thus has a big impact on the overall energy efficiency of a node. Many WSN MAC protocols have been proposed in the literature but it was found that most were not optimized for the group of WSNs displaying very low volumes of traffic in the network. In low traffic WSNs, a major problem faced in the communications process is clock drift, which causes nodes to become unsynchronized. The MAC protocol must overcome this and other problems while expending as little energy as possible. Many useful WSN applications show low traffic characteristics and thus a new MAC protocol was developed which is aimed at this category of WSNs. The new protocol, Dynamic Preamble Sampling MAC (DPS-MAC) builds on the family of preamble sampling protocols which were found to be most suitable for low traffic WSNs. In contrast to the most energy efficient existing preamble sampling protocols, DPS-MAC does not cater for the worst case clock drift that can occur between two nodes. Rather, it dynamically learns the actual clock drift experienced between any two nodes and then adjusts its operation accordingly. By simulation it was shown that DPS-MAC requires less protocol overhead during the communication process and thus performs more energy efficiently than its predecessors under various network operating conditions. Furthermore, DPS-MAC is less prone to become overloaded or unstable in conditions of high traffic load and high contention levels respectively. These improvements cause the use of DPS-MAC to lead to longer node and network lifetimes, thus making low traffic WSNs more feasible.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer EngineeringMEngUnrestricte

    Energy-Efficient Design of Adhoc and Sensor Networks

    Get PDF
    Adhoc and sensor networks (ASNs) are emerging wireless networks that are expected to have significant impact on the efficiency of many military and civil applications. However, building ASNs efficiently poses a considerable technical challenge because of the many constraints imposed by the environment, or by the ASN nodes capabilities themselves. One of the main challenges is the finite supply energy.Since the network hosts are battery operated, they need to be energy conserving so that the nodes and hence the network itself does not expire. In this thesis different techniques for anenergy-efficient design for ASNs are presented. My work spans two layers of the network protocol stack; these are the Medium Access Layer (MAC) and the Routing Layer. This thesis first identifies and highlights the different sources of energy inefficiency in ASNs, and then it describes how each of these inefficiencies is handled. Toward this goal, I first focus on the Medium Access (MAC) Layer and present my work that handles the wasted energy in transmission and describe how the transmission distance is optimized to extend the network lifetime. I then describe BLAM, an energy-efficient extension for the IEEE 802.11, that handles the wasted energy in collisions. Next, TDMA-ASAP, a new MAC protocol for sensor networks, is introduced. TDMA-ASAP targets the wasted energy in idle listening. I also investigate energy-efficiency at the routing layer level. First, the ``Flooding-Waves' problem is identified. This is a problem in any cost-based energy-efficient routing protocol for adhoc networks, different ways of solving this problem are presented. For sensor networks routing trees are usually used, I introduce a new routing scheme called RideSharing which is energy-efficient and fault-tolerant. RideSharing will deliver a better aggregate result to the end user while masking network linkfailures. Next, I present how to extend the RideSharing scheme to handle different link quality models. Finally, I introduce GroupBeat,a new health detection system for sensor networks, which when combined with RideSharing can deliver the information to the end user even in case of node failures
    • …
    corecore