188 research outputs found

    A Universal Scheme for Wyner–Ziv Coding of Discrete Sources

    Get PDF
    We consider the Wyner–Ziv (WZ) problem of lossy compression where the decompressor observes a noisy version of the source, whose statistics are unknown. A new family of WZ coding algorithms is proposed and their universal optimality is proven. Compression consists of sliding-window processing followed by Lempel–Ziv (LZ) compression, while the decompressor is based on a modification of the discrete universal denoiser (DUDE) algorithm to take advantage of side information. The new algorithms not only universally attain the fundamental limits, but also suggest a paradigm for practical WZ coding. The effectiveness of our approach is illustrated with experiments on binary images, and English text using a low complexity algorithm motivated by our class of universally optimal WZ codes

    Empirical processes, typical sequences and coordinated actions in standard Borel spaces

    Full text link
    This paper proposes a new notion of typical sequences on a wide class of abstract alphabets (so-called standard Borel spaces), which is based on approximations of memoryless sources by empirical distributions uniformly over a class of measurable "test functions." In the finite-alphabet case, we can take all uniformly bounded functions and recover the usual notion of strong typicality (or typicality under the total variation distance). For a general alphabet, however, this function class turns out to be too large, and must be restricted. With this in mind, we define typicality with respect to any Glivenko-Cantelli function class (i.e., a function class that admits a Uniform Law of Large Numbers) and demonstrate its power by giving simple derivations of the fundamental limits on the achievable rates in several source coding scenarios, in which the relevant operational criteria pertain to reproducing empirical averages of a general-alphabet stationary memoryless source with respect to a suitable function class.Comment: 14 pages, 3 pdf figures; accepted to IEEE Transactions on Information Theor

    Information Theoretic Proofs of Entropy Power Inequalities

    Full text link
    While most useful information theoretic inequalities can be deduced from the basic properties of entropy or mutual information, up to now Shannon's entropy power inequality (EPI) is an exception: Existing information theoretic proofs of the EPI hinge on representations of differential entropy using either Fisher information or minimum mean-square error (MMSE), which are derived from de Bruijn's identity. In this paper, we first present an unified view of these proofs, showing that they share two essential ingredients: 1) a data processing argument applied to a covariance-preserving linear transformation; 2) an integration over a path of a continuous Gaussian perturbation. Using these ingredients, we develop a new and brief proof of the EPI through a mutual information inequality, which replaces Stam and Blachman's Fisher information inequality (FII) and an inequality for MMSE by Guo, Shamai and Verd\'u used in earlier proofs. The result has the advantage of being very simple in that it relies only on the basic properties of mutual information. These ideas are then generalized to various extended versions of the EPI: Zamir and Feder's generalized EPI for linear transformations of the random variables, Takano and Johnson's EPI for dependent variables, Liu and Viswanath's covariance-constrained EPI, and Costa's concavity inequality for the entropy power.Comment: submitted for publication in the IEEE Transactions on Information Theory, revised versio

    Malleable coding for updatable cloud caching

    Full text link
    In software-as-a-service applications provisioned through cloud computing, locally cached data are often modified with updates from new versions. In some cases, with each edit, one may want to preserve both the original and new versions. In this paper, we focus on cases in which only the latest version must be preserved. Furthermore, it is desirable for the data to not only be compressed but to also be easily modified during updates, since representing information and modifying the representation both incur cost. We examine whether it is possible to have both compression efficiency and ease of alteration, in order to promote codeword reuse. In other words, we study the feasibility of a malleable and efficient coding scheme. The tradeoff between compression efficiency and malleability cost-the difficulty of synchronizing compressed versions-is measured as the length of a reused prefix portion. The region of achievable rates and malleability is found. Drawing from prior work on common information problems, we show that efficient data compression may not be the best engineering design principle when storing software-as-a-service data. In the general case, goals of efficiency and malleability are fundamentally in conflict.This work was supported in part by an NSF Graduate Research Fellowship (LRV), Grant CCR-0325774, and Grant CCF-0729069. This work was presented at the 2011 IEEE International Symposium on Information Theory [1] and the 2014 IEEE International Conference on Cloud Engineering [2]. The associate editor coordinating the review of this paper and approving it for publication was R. Thobaben. (CCR-0325774 - NSF Graduate Research Fellowship; CCF-0729069 - NSF Graduate Research Fellowship)Accepted manuscrip
    corecore