13,676 research outputs found

    Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

    Full text link
    In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce the cost per iteration of the latter algorithm. We establish the rate of convergence of the SBMD method along with its associated large-deviation results for solving general nonsmooth and stochastic optimization problems. We also introduce different variants of this method and establish their rate of convergence for solving strongly convex, smooth, and composite optimization problems, as well as certain nonconvex optimization problems. To the best of our knowledge, all these developments related to the SBMD methods are new in the stochastic optimization literature. Moreover, some of our results also seem to be new for block coordinate descent methods for deterministic optimization

    A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems

    Full text link
    We consider a class of nonconvex nonsmooth optimization problems whose objective is the sum of a smooth function and a finite number of nonnegative proper closed possibly nonsmooth functions (whose proximal mappings are easy to compute), some of which are further composed with linear maps. This kind of problems arises naturally in various applications when different regularizers are introduced for inducing simultaneous structures in the solutions. Solving these problems, however, can be challenging because of the coupled nonsmooth functions: the corresponding proximal mapping can be hard to compute so that standard first-order methods such as the proximal gradient algorithm cannot be applied efficiently. In this paper, we propose a successive difference-of-convex approximation method for solving this kind of problems. In this algorithm, we approximate the nonsmooth functions by their Moreau envelopes in each iteration. Making use of the simple observation that Moreau envelopes of nonnegative proper closed functions are continuous {\em difference-of-convex} functions, we can then approximately minimize the approximation function by first-order methods with suitable majorization techniques. These first-order methods can be implemented efficiently thanks to the fact that the proximal mapping of {\em each} nonsmooth function is easy to compute. Under suitable assumptions, we prove that the sequence generated by our method is bounded and any accumulation point is a stationary point of the objective. We also discuss how our method can be applied to concrete applications such as nonconvex fused regularized optimization problems and simultaneously structured matrix optimization problems, and illustrate the performance numerically for these two specific applications

    Lagrange optimality system for a class of nonsmooth convex optimization

    Get PDF
    In this paper, we revisit the augmented Lagrangian method for a class of nonsmooth convex optimization. We present the Lagrange optimality system of the augmented Lagrangian associated with the problems, and establish its connections with the standard optimality condition and the saddle point condition of the augmented Lagrangian, which provides a powerful tool for developing numerical algorithms. We apply a linear Newton method to the Lagrange optimality system to obtain a novel algorithm applicable to a variety of nonsmooth convex optimization problems arising in practical applications. Under suitable conditions, we prove the nonsingularity of the Newton system and the local convergence of the algorithm.Comment: 19 page

    Barrier subgradient method

    Get PDF
    In this paper we develop a new primal-dual subgradient method for nonsmooth convex optimization problems. This scheme is based on a self-concordant barrier for the basic feasible set. It is suitable for finding approximate solutions with certain relative accuracy. We discuss some applications of this technique including fractional covering problem, maximal concurrent flow problem, semidefinite relaxations and nonlinear online optimization.convex optimization, subgradient methods, non-smooth optimization, minimax problems, saddle points, variational inequalities, stochastic optimization, black-box methods, lower complexity bounds.
    corecore