6 research outputs found

    Visual Event Cueing in Linked Spatiotemporal Data

    Get PDF
    abstract: The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for just guiding audiences to desired beliefs, but also to fuel societal change or legitimize/delegitimize social movements. For this reason, tools that can help to clarify when changes in social discourse occur and identify their causes are of great use. This thesis presents a visual analytics framework that allows for the exploration and visualization of changes that occur in social climate with respect to space and time. Focusing on the links between data from the Armed Conflict Location and Event Data Project (ACLED) and a streaming RSS news data set, users can be cued into interesting events enabling them to form and explore hypothesis. This visual analytics framework also focuses on improving intervention detection, allowing users to hypothesize about correlations between events and happiness levels, and supports collaborative analysis.Dissertation/ThesisMasters Thesis Computer Science 201

    Real-time and archival data visualisation techniques in city dashboards

    Get PDF
    City dashboards have become a common smart city technology, emerging as a key means of sharing and visualising urban data for the benefit of the public and city administrations. Operating as the front-end of many cities’ data stores, dashboards display and benchmark indicators relating to city operations, characteristics, and trends, displayed through interactive visual representations of spatial and temporal patterns. Many dashboards collect, archive, and present data collected in real-time, as well as more traditional time-sliced administrative data. In this paper, we evaluate the techniques that dashboards employ to present real-time data to dashboard users. Our analysis identifies two factors that shape and differentiate real-time visual analytic tools: the dynamic nature of the data, how they are refreshed, and how the realtimeness of the data is communicated to the user; and how the tool enables archival comparison. We assess dashboard design according to the strategies used to address specific challenges associated with each factor, specifically change blindness and temporal pattern detection. We conclude by proposing effective techniques for city dashboard design

    Hybrid optimization for k-means clustering learning enhancement

    Get PDF
    In recent years, combinational optimization issues are introduced as critical problems in clustering algorithms to partition data in a way that optimizes the performance of clustering. K-means algorithm is one of the famous and more popular clustering algorithms which can be simply implemented and it can easily solve the optimization issue with less extra information. But the problems associated with Kmeans algorithm are high error rate, high intra cluster distance and low accuracy. In this regard, researchers have worked to improve the problems computationally, creating efficient solutions that lead to better data analysis through the K-means clustering algorithm. The aim of this study is to improve the accuracy of the Kmeans algorithm using hybrid and meta-heuristic methods. To this end, a metaheuristic approach was proposed for the hybridization of K-means algorithm scheme. It obtained better results by developing a hybrid Genetic Algorithm-K-means (GAK- means) and a hybrid Partial Swarm Optimization-K-means (PSO-K-means) method. Finally, the meta-heuristic of Genetic Algorithm-Partial Swarm Optimization (GAPSO) and Partial Swarm Optimization-Genetic Algorithm (PSOGA) through the K-means algorithm were proposed. The study adopted a methodological approach to achieve the goal in three phases. First, it developed a hybrid GA-based K-means algorithm through a new crossover algorithm based on the range of attributes in order to decrease the number of errors and increase the accuracy rate. Then, a hybrid PSO-based K-means algorithm was mooted by a new calculation function based on the range of domain for decreasing intra-cluster distance and increasing the accuracy rate. Eventually, two meta-heuristic algorithms namely GAPSO-K-means and PSOGA-K-means algorithms were introduced by combining the proposed algorithms to increase the number of correct answers and improve the accuracy rate. The approach was evaluated using six integer standard data sets provided by the University of California Irvine (UCI). Findings confirmed that the hybrid optimization approach enhanced the performance of K-means clustering algorithm. Although both GA-K-means and PSO-K-means improved the result of K-means algorithm, GAPSO-K-means and PSOGA-K-means meta-heuristic algorithms outperformed the hybrid approaches. PSOGA-K-means resulted in 5%- 10% more accuracy for all data sets in comparison with other methods. The approach adopted in this study successfully increased the accuracy rate of the clustering analysis and decreased its error rate and intra-cluster distance
    corecore