2 research outputs found

    Internet Image Viewer (iiV)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualizing 3-dimensional (3-D) datasets is an important part of modern neuroimaging research. Many tools address this problem; however, they often fail to address specific needs and flexibility, such as the ability to work with different data formats, to control how and what data are displayed, to interact with values, and to undo mistakes.</p> <p>Results</p> <p>iiV, an interactive software program for displaying 3-D brain images, is described. This tool was programmed to solve basic problems in 3-D data visualization. It is written in Java so it is extensible, is platform independent, and can display images within web pages.</p> <p>iiV displays 3-D images as 2-dimensional (2-D) slices with each slice being an independent object with independent features such as location, zoom, colors, labels, etc. Feature manipulation becomes easier by having a full set of editing capabilities including the following: undo or redo changes; drag, copy, delete and paste objects; and save objects with their features to a file for future editing. It can read multiple standard positron emission tomography (PET) and magnetic resonance imaging (MRI) file formats like ECAT, ECAT7, ANALYZE, NIfTI-1 and DICOM. We present sample applications to illustrate some of the features and capabilities.</p> <p>Conclusion</p> <p>iiV is an image display tool with many useful features. It is highly extensible, platform independent, and web-compatible. This report summarizes its features and applications, while illustrating iiV's usefulness to the biomedical imaging community.</p

    A Medical Imaging and Visualization Toolkit in Java

    No full text
    Medical imaging research and clinical applications usually require combination and integration of various techniques ranging from image processing and analysis to realistic visualization to user-friendly interaction. Researchers with different backgrounds coming from diverse areas have been using numerous types of hardware, software, and environments to obtain their results. We also observe that students often build their tools from scratch resulting in redundant work. A generic and flexible medical imaging and visualization toolkit would be helpful in medical research and educational institutes to reduce redundant development work and hence increase research efficiency. This paper presents our experience in developing a Medical Imaging and Visualization Toolkit (BIL-kit) that is a set of comprehensive libraries as well as a number of interactive tools. The BIL-kit covers a wide range of fundamental functions from image conversion and transformation, image segmentation, and analysis to geometric model generation and manipulation, all the way up to 3D visualization and interactive simulation. The toolkit design and implementation emphasize the reusability and flexibility. BIL-kit is implemented in the Java language so that it works in hybrid and dynamic research and educational environments. This also allows the toolkit to extend its usage for the development of Web-based applications. Several BIL-kit-based tools and applications are presented including image converter, image processor, general anatomy model simulator, vascular modeling environment, and volume viewer. BIL-kit is a suitable platform for researchers and students to develop visualization and simulation prototypes, and it can also be used for the development of clinical applications
    corecore