902 research outputs found

    Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics

    Full text link
    Neural activity patterns related to behavior occur at many scales in time and space from the atomic and molecular to the whole brain. Here we explore the feasibility of interpreting neurophysiological data in the context of many-body physics by using tools that physicists have devised to analyze comparable hierarchies in other fields of science. We focus on a mesoscopic level that offers a multi-step pathway between the microscopic functions of neurons and the macroscopic functions of brain systems revealed by hemodynamic imaging. We use electroencephalographic (EEG) records collected from high-density electrode arrays fixed on the epidural surfaces of primary sensory and limbic areas in rabbits and cats trained to discriminate conditioned stimuli (CS) in the various modalities. High temporal resolution of EEG signals with the Hilbert transform gives evidence for diverse intermittent spatial patterns of amplitude (AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize in the beta and gamma ranges at near zero time lags over long distances. The dominant mechanism for neural interactions by axodendritic synaptic transmission should impose distance-dependent delays on the EEG oscillations owing to finite propagation velocities. It does not. EEGs instead show evidence for anomalous dispersion: the existence in neural populations of a low velocity range of information and energy transfers, and a high velocity range of the spread of phase transitions. This distinction labels the phenomenon but does not explain it. In this report we explore the analysis of these phenomena using concepts of energy dissipation, the maintenance by cortex of multiple ground states corresponding to AM patterns, and the exclusive selection by spontaneous breakdown of symmetry (SBS) of single states in sequences.Comment: 31 page

    Dynamics of large-scale brain activity in health and disease

    Get PDF
    Tese de doutoramento em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008Cognition relies on the integration of information processed in widely distributed brain regions. Neuronal oscillations are thought to play an important role in the supporting local and global coordination of neuronal activity. This study aimed at investigating the dynamics of the ongoing healthy brain activity and early changes observed in patients with Alzheimer's disease (AD). Electro- and magnetoencephalography (EEG/MEG) were used due to high temporal resolution of these techniques. In order to evaluate the functional connectivity in AD, a novel algorithm based on the concept of generalized synchronization was improved by defining the embedding parameters as a function of the frequency content of interest. The time-frequency synchronization likelihood (TF SL) revealed a loss of fronto-temporal/parietal interactions in the lower alpha (8 10 Hz) oscillations measured by MEG that was not found with classical coherence. Further, long-range temporal (auto-) correlations (LRTC) in ongoing oscillations were assessed with detrended fluctuation analysis (DFA) on times scales from 1 25 seconds. Significant auto-correlations indicate a dependence of the underlying dynamical processes at certain time scales of separation, which may be viewed as a form of "physiological memory". We tested whether the DFA index could be related to the decline in cognitive memory in AD. Indeed, a significant decrease in the DFA exponents was observed in the alpha band (6 13 Hz) over temporo-parietal regions in the patients compared with the age-matched healthy control subjects. Finally, the mean level of SL of EEG signals was found to be significantly decreased in the AD patients in the beta (13 30 Hz) and in the upper alpha (10 13 Hz) and the DFA exponents computed as a measure of the temporal structure of SL time series were larger for the patients than for subjects with subjective memory complaint. The results obtained indicate that the study of spatio-temporal dynamics of resting-state EEG/MEG brain activity provides valuable information about the AD pathophysiology, which potentially could be developed into clinically useful indices for assessing progression of AD or response to medication

    Seizure development in the acute intrahippocampal epileptic focus.

    Get PDF
    Currently, an epileptic seizure is considered to involve a temporary network that exists for a finite period of time. Formation of this network evolves through spread of epileptiform activity from a seizure onset zone (SOZ). Propagation of seizures evoked by kainic acid injection in hippocampus to different brain areas was analyzed at macro- and micro-intervals. The mean latency of seizure occurrence in different brain areas varied between 0.5 sec and 85 sec (mean 14.9 ± 14.5 (SD)), and it increased after each consecutive seizure in areas located contralateral to the area of injection, but not in the ipsilateral sites. We have shown that only 41% of epileptic individual events in target brain areas were driven by epileptic events generated in the SOZ once the seizure began. Fifty-nine percent of epileptiform events in target areas occurred one millisecond before or after events in the SOZ. These data illustrate that during seizure maintenance, only some individual epileptiform events in areas outside of SOZ could be consistently triggered by the SOZ; and the majority must be triggered by a driver located outside the SOZ or brain areas involved in ictal activity could be coupled to each other via an unknown mechanism such as stochastic resonance

    Changes in Hippocampal-Anterior Cingulate Cortex Interactions During Remote Memory Recall

    Full text link
    Spatial memory is an important cognitive process that relies on extensive neural networks throughout the brain. The hippocampus (HC) is important for the formation of these memories but over time, in a process referred to as consolidation, recall becomes increasingly reliant on other brain areas. The anterior cingulate cortex (ACC), a region within the medial prefrontal cortex, is important for spatial learning, spatial working memory, and remote memory recall, but the mechanisms underlying recall processes are still unknown. To better understand the role of the ACC and HC during memory recall, we introduced rodents into a series of spatially and texturally unique environments at differing delay periods (day 1 (learning), day 11 (recent), and day 18 (remote)) while simultaneously recording local field potentials (LFPs) from both areas. We found significant increases in theta band coherence between ipsilateral ACC and HC LFPs during remote memory recall but not recent memory recall. In addition to these changes, directional analysis revealed a reversal in signal initiation, such that during the learning and recent recall condition, hippocampal theta oscillations led ACC theta oscillations. However, during the remote recall condition, the direction changed, and ACC theta led hippocampal theta activity. This experiment provides evidence of time-dependent changes in ACC – hippocampal network interactions, and illustrates a possible mechanism that describes how the ACC mediates recall of remote spatial memories

    On the Dynamics of Epileptic Spikes and Focus Localization in Temporal Lobe Epilepsy

    Get PDF
    abstract: Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation to formulate a mathematical framework within which the dynamics of interictal spikes could be thoroughly investigated. A new epileptic spike detection algorithm was developed by employing data adaptive morphological filters. The performance of the spike detection algorithm was favorably compared with others in the literature. A novel spike spatial synchronization measure was developed and tested on coupled spiking neuron models. Application of this measure to individual epileptic spikes in EEG from patients with temporal lobe epilepsy revealed long-term trends of increase in synchronization between pairs of brain sites before seizures and desynchronization after seizures, in the same patient as well as across patients, thus supporting the hypothesis that seizures may occur to break (reset) the abnormal spike synchronization in the brain network. Furthermore, based on these results, a separate spatial analysis of spike rates was conducted that shed light onto conflicting results in the literature about variability of spike rate before and after seizure. The ability to automatically classify seizures into clinical and subclinical was a result of the above findings. A novel method for epileptogenic focus localization from interictal periods based on spike occurrences was also devised, combining concepts from graph theory, like eigenvector centrality, and the developed spike synchronization measure, and tested very favorably against the utilized gold rule in clinical practice for focus localization from seizures onset. Finally, in another application of resetting of brain dynamics at seizures, it was shown that it is possible to differentiate with a high accuracy between patients with epileptic seizures (ES) and patients with psychogenic nonepileptic seizures (PNES). The above studies of spike dynamics have elucidated many unknown aspects of ictogenesis and it is expected to significantly contribute to further understanding of the basic mechanisms that lead to seizures, the diagnosis and treatment of epilepsy.Dissertation/ThesisPh.D. Electrical Engineering 201

    Neuronal networks underlying Jeavons-syndrome and eye closure sensitivity by using EEG source analysis methods

    Get PDF
    Eyelid myoclonia with absences (EMA) or Jeavons syndrome (JS) is considered to be the type of idiopathic generalized epilepsy, clinically characterized by eyelid myoclonia (EM) with or without absences, eye closure-induced electroencephalography (EEG) paroxysms, and photosensitivity. Interictal and ictal EEG mostly shows high amplitude discharges of generalised irregular spike/polyspike and waves (GSW) at 3-6 Hz often appearing immediately after closing the eyes (eye closure sensitivity). The mechanism underling eye closure sensitivity (ECS) and Jeavons syndrome is not well understood. The clinical and neuroimaging studies suggest that the occipital visual cortex and thalamus play the main role in the generation of EMA in the presence of light and eye closure. In our study, we attempted to estimate functional connectivity (FC) during ictal myoclonus and interictal generalized epileptic discharges using the imaginary part of coherency (iCoh) at the sensory and source level to find out what changes underlie JS and to find out whether there is a network-level difference between ictal and interictal discharges.The EEG data of 11 pediatric patients with the diagnosis of Jeavons syndrome were retrospectively collected and analyzed. In our FC study, we found a complex involvement of different brain networks. We saw the thalamus connection to the brain regions, which participate in state of consciousness, oculomotor control, myoclonus, eye closure sensitivity and photosensitivity. Our result complies with the previous results of fMRI studies performed in JS and IGEs Patients. However, when we compared the FC of ictal and interictal EEG paroxysms we could not find any significant differences. This could be due to the fact that we only selected one seizure type, myoclonus and excluded epochs with absences. We speculate that the reason we did not see any group differences is DM network is that the state of consciousness was not altered in the selected segmen

    Incessant transitions between active and silent states in cortico-thalamic circuits and altered neuronal excitability lead to epilepsy

    Get PDF
    La ligne directrice de nos expériences a été l'hypothèse que l'apparition et/ou la persistance des fluctuations de longue durée entre les états silencieux et actifs dans les réseaux néocorticaux et une excitabilité neuronale modifiée sont les facteurs principaux de l'épileptogenèse, menant aux crises d’épilepsie avec expression comportementale. Nous avons testé cette hypothèse dans deux modèles expérimentaux différents. La déafférentation corticale chronique a essayé de répliquer la déafférentation physiologique du neocortex observée pendant le sommeil à ondes lentes. Dans ces conditions, caractérisées par une diminution de la pression synaptique et par une incidence augmentée de périodes silencieuses dans le système cortico-thalamique, le processus de plasticité homéostatique augmente l’excitabilité neuronale. Par conséquent, le cortex a oscillé entre des périodes actives et silencieuses et, également, a développé des activités hyper-synchrones, s'étendant de l’hyperexcitabilité cellulaire à l'épileptogenèse focale et à des crises épileptiques généralisées. Le modèle de stimulation sous-liminale chronique (« kindling ») du cortex cérébral a été employé afin d'imposer au réseau cortical une charge synaptique supérieure à celle existante pendant les états actifs naturels - état de veille ou sommeil paradoxal (REM). Dans ces conditions un mécanisme différent de plasticité qui s’est exprimé dans le système thalamo-corticale a imposé pour des longues périodes de temps des oscillations continuelles entre les époques actives et silencieuses, que nous avons appelées des activités paroxysmiques persistantes. Indépendamment du mécanisme sous-jacent de l'épileptogenèse les crises d’épilepsie ont montré certaines caractéristiques similaires : une altération dans l’excitabilité neuronale mise en évidence par une incidence accrue des décharges neuronales de type bouffée, une tendance constante vers la généralisation, une propagation de plus en plus rapide, une synchronie augmentée au cours du temps, et une modulation par les états de vigilance (facilitation pendant le sommeil à ondes lentes et barrage pendant le sommeil REM). Les états silencieux, hyper-polarisés, de neurones corticaux favorisent l'apparition des bouffées de potentiels d’action en réponse aux événements synaptiques, et l'influence post-synaptique d'une bouffée de potentiels d’action est beaucoup plus importante par rapport à l’impacte d’un seul potentiel d’action. Nous avons également apporté des évidences que les neurones néocorticaux de type FRB sont capables à répondre avec des bouffées de potentiels d’action pendant les phases hyper-polarisées de l'oscillation lente, propriété qui peut jouer un rôle très important dans l’analyse de l’information dans le cerveau normal et dans l'épileptogenèse. Finalement, nous avons rapporté un troisième mécanisme de plasticité dans les réseaux corticaux après les crises d’épilepsie - une diminution d’amplitude des potentiels post-synaptiques excitatrices évoquées par la stimulation corticale après les crises - qui peut être un des facteurs responsables des déficits comportementaux observés chez les patients épileptiques. Nous concluons que la transition incessante entre des états actifs et silencieux dans les circuits cortico-thalamiques induits par disfacilitation (sommeil à ondes lentes), déafférentation corticale (épisodes ictales à 4-Hz) ou par une stimulation sous-liminale chronique (activités paroxysmiques persistantes) crée des circonstances favorables pour le développement de l'épileptogenèse. En plus, l'augmentation de l’incidence des bouffées de potentiels d’actions induisant une excitation post-synaptique anormalement forte, change l'équilibre entre l'excitation et l'inhibition vers une supra-excitation menant a l’apparition des crises d’épilepsie.The guiding line in our experiments was the hypothesis that the occurrence and / or the persistence of long-lasting fluctuations between silent and active states in the neocortical networks, together with a modified neuronal excitability are the key factors of epileptogenesis, leading to behavioral seizures. We addressed this hypothesis in two different experimental models. The chronic cortical deafferentation replicated the physiological deafferentation of the neocortex observed during slow-wave sleep (SWS). Under these conditions of decreased synaptic input and increased incidence of silent periods in the corticothalamic system the process of homeostatic plasticity up-regulated cortical cellular and network mechanisms and leaded to an increased excitability. Therefore, the deafferented cortex was able to oscillate between active and silent epochs for long periods of time and, furthermore, to develop highly synchronized activities, ranging from cellular hyperexcitability to focal epileptogenesis and generalized seizures. The kindling model was used in order to impose to the cortical network a synaptic drive superior to the one naturally occurring during the active states - wake or rapid eye movements (REM) sleep. Under these conditions a different plasticity mechanism occurring in the thalamo-cortical system imposed long-lasting oscillatory pattern between active and silent epochs, which we called outlasting activities. Independently of the mechanism of epileptogenesis seizures showed some analogous characteristics: alteration of the neuronal firing pattern with increased bursts probability, a constant tendency toward generalization, faster propagation and increased synchrony over the time, and modulation by the state of vigilance (overt during SWS and completely abolished during REM sleep). Silent, hyperpolarized, states of cortical neurons favor the induction of burst firing in response to depolarizing inputs, and the postsynaptic influence of a burst is much stronger as compared to a single spike. Furthermore, we brought evidences that a particular type of neocortical neurons - fast rhythmic bursting (FRB) class - is capable to consistently respond with bursts during the hyperpolarized phase of the slow oscillation, fact that may play a very important role in both normal brain processing and in epileptogenesis. Finally, we reported a third plastic mechanism in the cortical network following seizures - a decreasing amplitude of cortically evoked excitatory post-synaptic potentials (EPSP) following seizures - which may be one of the factors responsible for the behavioral deficits observed in patients with epilepsy. We conclude that incessant transitions between active and silent states in cortico-thalamic circuits induced either by disfacilitation (sleep), cortical deafferentation (4-Hz ictal episodes) and by kindling (outlasting activities) create favorable circumstances for epileptogenesis. The increase in burst-firing, which further induce abnormally strong postsynaptic excitation, shifts the balance of excitation and inhibition toward overexcitation leading to the onset of seizures

    Modulation of intrinsic and synaptic excitability during sleep oscillations and electrographic seizures

    Get PDF
    Le présente mémoire fournit des nouvelles évidences montrant la modulation de l’excitabilité neuronale intrinsèque et synaptique, et la conséquence de cette modulation sur l’activité neuronale durant à la fois, les oscillations lentes du sommeil, et les crises électrographiques in vivo chez des animaux anesthésiés. Nous effectuons des enregistrements intracellulaires simultanés de neurones corticaux et des potentiels de champs locaux au niveau du gyrus suprasylvien à l’intérieur du cortex associatif pariétal (aires : 5, 7 et 21). Nous suggérons que la fluctuation de la concentration extracellulaire du calcium durant les oscillations lentes du sommeil module à la fois, l’excitabilité intrinsèque et synaptique des neurones corticaux, ainsi par conséquent, elle module affecte la relation d’input-output de ces neurones. L’apparition durant les oscillations lentes du sommeil, des crises de type Lennex-Gastaut qui sont générées corticalement, nous a permet d’étudier les propriétés spatio-temporelles des ondes paroxysmiques rapides associées avec ce type de crises. Nous suggérons que les ondes paroxysmiques rapides apparaissent comme des oscillations quasi-indépendantes même dans les localisations corticales voisines, suggérant leur origine focal.The present memoir provides new evidences showing the modulation of intrinsic and synaptic excitability of cortical neurons, and the consequence of this modulation on neuronal activity during both slow sleep oscillations and electrographic seizures in vivo in anaesthetized animals. We performed simultaneous recordings of cortical neurons with local field potentials in suprasylvian gyrus within parietal associative cortex (area 5, 7 and 21). We suggest that the fluctuation of extacellular calcium concentration during slow sleep oscillations, modulates both intrinsic and synaptic excitability cortical neurons, thus by consequence modulates the input-output relationship of these neurons. The occurrence during slow-wave sleep of cortically generated Lennox-Gastaut type of seizures admits us to study the spatio-temporal properties of paroxysmal fast runs associated with this type of seizures. We suggest that fast runs appeared as quasi-independent oscillations even in neighbouring cortical locations suggesting their focal origin
    • …
    corecore