60,622 research outputs found

    Rates of convergence for empirical spectral measures: a soft approach

    Full text link
    Understanding the limiting behavior of eigenvalues of random matrices is the central problem of random matrix theory. Classical limit results are known for many models, and there has been significant recent progress in obtaining more quantitative, non-asymptotic results. In this paper, we describe a systematic approach to bounding rates of convergence and proving tail inequalities for the empirical spectral measures of a wide variety of random matrix ensembles. We illustrate the approach by proving asymptotically almost sure rates of convergence of the empirical spectral measure in the following ensembles: Wigner matrices, Wishart matrices, Haar-distributed matrices from the compact classical groups, powers of Haar matrices, randomized sums and random compressions of Hermitian matrices, a random matrix model for the Hamiltonians of quantum spin glasses, and finally the complex Ginibre ensemble. Many of the results appeared previously and are being collected and described here as illustrations of the general method; however, some details (particularly in the Wigner and Wishart cases) are new. Our approach makes use of techniques from probability in Banach spaces, in particular concentration of measure and bounds for suprema of stochastic processes, in combination with more classical tools from matrix analysis, approximation theory, and Fourier analysis. It is highly flexible, as evidenced by the broad list of examples. It is moreover based largely on "soft" methods, and involves little hard analysis

    Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

    Full text link
    It is known that the multiplication of an N×MN \times M matrix with an M×PM \times P matrix can be performed using fewer multiplications than what the naive NMPNMP approach suggests. The most famous instance of this is Strassen's algorithm for multiplying two 2×22\times 2 matrices in 7 instead of 8 multiplications. This gives rise to the constraint satisfaction problem of fast matrix multiplication, where a set of R<NMPR < NMP multiplication terms must be chosen and combined such that they satisfy correctness constraints on the output matrix. Despite its highly combinatorial nature, this problem has not been exhaustively examined from that perspective, as evidenced for example by the recent deep reinforcement learning approach of AlphaTensor. In this work, we propose a simple yet novel Constraint Programming approach to find non-commutative algorithms for fast matrix multiplication or provide proof of infeasibility otherwise. We propose a set of symmetry-breaking constraints and valid inequalities that are particularly helpful in proving infeasibility. On the feasible side, we find that exploiting solver performance variability in conjunction with a sparsity-based problem decomposition enables finding solutions for larger (feasible) instances of fast matrix multiplication. Our experimental results using CP Optimizer demonstrate that we can find fast matrix multiplication algorithms for matrices up to 3×33\times 3 in a short amount of time

    New Orders Among Hilbert Space Operators

    Full text link
    This article introduces several new relations among related Hilbert space operators. In particular, we prove some L\"{o}wener partial orderings among T,T,RT,IT,T+TT, |T|, \mathcal{R}T, \mathcal{I}T, |T|+|T^*| and many other related forms, as a new discussion in this field; where RT\mathcal{R}T and IT\mathcal{I}T are the real and imaginary parts of the operator TT. Our approach will be based on proving the positivity of some new matrix operators, where several new forms for positive matrix operators will be presented as a key tool in obtaining the other ordering results. As an application, we present some results treating numerical radius inequalities in a way that extends some known results in this direction, in addition to some results about the singular values

    A Characterization of Lyapunov Inequalities for Stability of Switched Systems

    Full text link
    We study stability criteria for discrete-time switched systems and provide a meta-theorem that characterizes all Lyapunov theorems of a certain canonical type. For this purpose, we investigate the structure of sets of LMIs that provide a sufficient condition for stability. Various such conditions have been proposed in the literature in the past fifteen years. We prove in this note that a family of languagetheoretic conditions recently provided by the authors encapsulates all the possible LMI conditions, thus putting a conclusion to this research effort. As a corollary, we show that it is PSPACE-complete to recognize whether a particular set of LMIs implies stability of a switched system. Finally, we provide a geometric interpretation of these conditions, in terms of existence of an invariant set.Comment: arXiv admin note: text overlap with arXiv:1201.322

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente
    corecore