13,351 research outputs found

    Design and Optimizing of On-Chip Kinesin Substrates for Molecular Communication

    Full text link
    Lab-on-chip devices and point-of-care diagnostic chip devices are composed of many different components such as nanosensors that must be able to communicate with other components within the device. Molecular communication is a promising solution for on-chip communication. In particular, kinesin driven microtubule (MT) motility is an effective means of transferring information particles from one component to another. However, finding an optimal shape for these channels can be challenging. In this paper we derive a mathematical optimization model that can be used to find the optimal channel shape and dimensions for any transmission period. We derive three specific models for the rectangular channels, regular polygonal channels, and regular polygonal ring channels. We show that the optimal channel shapes are the square-shaped channel for the rectangular channel, and circular-shaped channel for the other classes of shapes. Finally, we show that among all 2 dimensional shapes the optimal design choice that maximizes information rate is the circular-shaped channel.Comment: accepted for publication in IEEE Transactions on Nanotechnolog

    Normal Inverse Gaussian Approximation for Arrival Time Difference in Flow-Induced Molecular Communications

    Get PDF
    In this paper, we consider molecular communications in one-dimensional flow-induced diffusion channels with a perfectly absorbing receiver. In such channels, the random propagation delay until the molecules are absorbed follows an inverse Gaussian (IG) distribution and is referred to as first hitting time. Knowing the distribution for the difference of the first hitting times of two molecules is very important if the information is encoded by a limited set of molecules and the receiver exploits their arrival time and/or order. Hence, we propose a moment matching approximation by a normal inverse Gaussian (NIG) distribution and we derive an expression for the asymptotic tail probability. Numerical evaluations showed that the NIG approximation matches very well with the exact solution obtained by numerical convolution of the IG density functions. Moreover, the asymptotic tail probability outperforms state-of-the-art tail approximations.Comment: This paper has been submitted to IEEE Transactions on Molecular, Biological and Multi-Scale Communication

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    A comprehensive survey of recent advancements in molecular communication

    Get PDF
    With much advancement in the field of nanotechnology, bioengineering and synthetic biology over the past decade, microscales and nanoscales devices are becoming a reality. Yet the problem of engineering a reliable communication system between tiny devices is still an open problem. At the same time, despite the prevalence of radio communication, there are still areas where traditional electromagnetic waves find it difficult or expensive to reach. Points of interest in industry, cities, and medical applications often lie in embedded and entrenched areas, accessible only by ventricles at scales too small for conventional radio waves and microwaves, or they are located in such a way that directional high frequency systems are ineffective. Inspired by nature, one solution to these problems is molecular communication (MC), where chemical signals are used to transfer information. Although biologists have studied MC for decades, it has only been researched for roughly 10 year from a communication engineering lens. Significant number of papers have been published to date, but owing to the need for interdisciplinary work, much of the results are preliminary. In this paper, the recent advancements in the field of MC engineering are highlighted. First, the biological, chemical, and physical processes used by an MC system are discussed. This includes different components of the MC transmitter and receiver, as well as the propagation and transport mechanisms. Then, a comprehensive survey of some of the recent works on MC through a communication engineering lens is provided. The paper ends with a technology readiness analysis of MC and future research directions
    corecore