115 research outputs found

    Low-complexity Location-aware Multi-user Massive MIMO Beamforming for High Speed Train Communications

    Full text link
    Massive Multiple-input Multiple-output (MIMO) adaption is one of the primary evolving objectives for the next generation high speed train (HST) communication system. In this paper, we consider how to design an efficient low-complexity location-aware beamforming for the multi-user (MU) massive MIMO system in HST scenario. We first put forward a low-complexity beamforming based on location information, where multiple users are considered. Then, without considering inter-beam interference, a closed-form solution to maximize the total service competence of base station (BS) is proposed in this MU HST scenario. Finally, we present a location-aid searching-based suboptimal solution to eliminate the inter-beam interference and maximize the BS service competence. Various simulations are given to exhibit the advantages of our proposed massive MIMO beamforming method.Comment: This paper has been accepted for future publication by VTC2017-Sprin

    Contextual Beamforming: Exploiting Location and AI for Enhanced Wireless Telecommunication Performance

    Full text link
    The pervasive nature of wireless telecommunication has made it the foundation for mainstream technologies like automation, smart vehicles, virtual reality, and unmanned aerial vehicles. As these technologies experience widespread adoption in our daily lives, ensuring the reliable performance of cellular networks in mobile scenarios has become a paramount challenge. Beamforming, an integral component of modern mobile networks, enables spatial selectivity and improves network quality. However, many beamforming techniques are iterative, introducing unwanted latency to the system. In recent times, there has been a growing interest in leveraging mobile users' location information to expedite beamforming processes. This paper explores the concept of contextual beamforming, discussing its advantages, disadvantages and implications. Notably, the study presents an impressive 53% improvement in signal-to-noise ratio (SNR) by implementing the adaptive beamforming (MRT) algorithm compared to scenarios without beamforming. It further elucidates how MRT contributes to contextual beamforming. The importance of localization in implementing contextual beamforming is also examined. Additionally, the paper delves into the use of artificial intelligence schemes, including machine learning and deep learning, in implementing contextual beamforming techniques that leverage user location information. Based on the comprehensive review, the results suggest that the combination of MRT and Zero forcing (ZF) techniques, alongside deep neural networks (DNN) employing Bayesian Optimization (BO), represents the most promising approach for contextual beamforming. Furthermore, the study discusses the future potential of programmable switches, such as Tofino, in enabling location-aware beamforming

    Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G

    Get PDF
    Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays with various beamforming technologies in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. This paper aims to overview the field of antenna array enabled space/air/ground communications and networking. The technical potentials and challenges of antenna array enabled space/air/ground communications and networking are presented first. Subsequently, the antenna array structures and designs are discussed. We then discuss various emerging technologies facilitated by antenna arrays to meet the new communication requirements of space/air/ground communication systems. Enabled by these emerging technologies, the distinct characteristics, challenges, and solutions for space communications, airborne communications, and ground communications are reviewed. Finally, we present promising directions for future research in antenna array enabled space/air/ground communications and networking

    5G Small Cell Backhaul: A Solution Based on GSM-Aided Hybrid Beamforming

    Get PDF
    In the proposed 5G architecture where cell densification is expected to be used for network capacity enhancement, the deployment of millimetre wave (mmWave) massive multiple-input multiple-output (MIMO) in urban microcells located outdoor is expected to be used for high channel capacity small cell wireless traffic backhauling as the use of copper and optic-fibre cable becomes infeasible owing to the high cost and issues with right of way. The high cost of radio frequency (RF) chain and its prohibitive power consumption are big drawbacks for mmWave massive MIMO transceiver implementation and the complexity of using optimal detection algorithm as a result of inter-channel interference (ICI) as the base station antenna approaches large numbers. Spatial modulation (SM) and Generalized Spatial Modulation (GSM) are new novel techniques proposed as a low-complexity, low cost and low-power-consumption MIMO candidate with the ability to further reduce the RF chain for mmWave massive MIMO hybrid beamforming systems. In this work, we present the principles of generalized spatial modulation aided hybrid beamforming (GSMA-HBF) and its use for cost-effective, high energy efficient mmWave massive MIMO transceiver for small cell wireless backhaul in a 5G ultra-dense network
    • …
    corecore