50,365 research outputs found

    Discrete Signal Processing on Graphs: Frequency Analysis

    Full text link
    Signals and datasets that arise in physical and engineering applications, as well as social, genetics, biomolecular, and many other domains, are becoming increasingly larger and more complex. In contrast to traditional time and image signals, data in these domains are supported by arbitrary graphs. Signal processing on graphs extends concepts and techniques from traditional signal processing to data indexed by generic graphs. This paper studies the concepts of low and high frequencies on graphs, and low-, high-, and band-pass graph filters. In traditional signal processing, there concepts are easily defined because of a natural frequency ordering that has a physical interpretation. For signals residing on graphs, in general, there is no obvious frequency ordering. We propose a definition of total variation for graph signals that naturally leads to a frequency ordering on graphs and defines low-, high-, and band-pass graph signals and filters. We study the design of graph filters with specified frequency response, and illustrate our approach with applications to sensor malfunction detection and data classification

    Complex and Hypercomplex Discrete Fourier Transforms Based on Matrix Exponential Form of Euler's Formula

    Get PDF
    We show that the discrete complex, and numerous hypercomplex, Fourier transforms defined and used so far by a number of researchers can be unified into a single framework based on a matrix exponential version of Euler's formula ejθ=cosθ+jsinθe^{j\theta}=\cos\theta+j\sin\theta, and a matrix root of -1 isomorphic to the imaginary root jj. The transforms thus defined can be computed using standard matrix multiplications and additions with no hypercomplex code, the complex or hypercomplex algebra being represented by the form of the matrix root of -1, so that the matrix multiplications are equivalent to multiplications in the appropriate algebra. We present examples from the complex, quaternion and biquaternion algebras, and from Clifford algebras Cl1,1 and Cl2,0. The significance of this result is both in the theoretical unification, and also in the scope it affords for insight into the structure of the various transforms, since the formulation is such a simple generalization of the classic complex case. It also shows that hypercomplex discrete Fourier transforms may be computed using standard matrix arithmetic packages without the need for a hypercomplex library, which is of importance in providing a reference implementation for verifying implementations based on hypercomplex code.Comment: The paper has been revised since the second version to make some of the reasons for the paper clearer, to include reviews of prior hypercomplex transforms, and to clarify some points in the conclusion

    A Hilbert Space Theory of Generalized Graph Signal Processing

    Full text link
    Graph signal processing (GSP) has become an important tool in many areas such as image processing, networking learning and analysis of social network data. In this paper, we propose a broader framework that not only encompasses traditional GSP as a special case, but also includes a hybrid framework of graph and classical signal processing over a continuous domain. Our framework relies extensively on concepts and tools from functional analysis to generalize traditional GSP to graph signals in a separable Hilbert space with infinite dimensions. We develop a concept analogous to Fourier transform for generalized GSP and the theory of filtering and sampling such signals
    corecore