655 research outputs found

    The Effect of Robotic Technology on Perioperative Outcomes in Total Knee Arthroplasty

    Get PDF
    Introduction Robotic technology has recently regained momentum in total knee arthroplasty (TKA) but the effects of this technology on accuracy of implant positioning, intraoperative soft tissue injury and postoperative functional rehabilitation remain unknown. The objectives of this research thesis were to compare a comprehensive range of radiological objectives and perioperative outcomes in conventional jig-based TKA versus robotic-arm assisted TKA, and use optical motion capture technology to quantify the effects of anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) resection on knee biomechanics. Methods A series of prospective cohort studies were undertaken in patients with established knee osteoarthritis undergoing primary conventional jig-based TKA versus robotic-arm assisted TKA. Predefined radiological and perioperative study outcomes were recorded by independent observers. Optical motion capture technology during robotic TKA was used to quantify the effects of ACL and PCL resection on knee biomechanics. Results Robotic-arm assisted TKA was associated with improved accuracy of implant positioning, reduced periarticular soft tissue injury, decreased bone trauma, improved postoperative functional rehabilitation, and reduced early systemic inflammatory response compared to conventional jig-based TKA. The Macroscopic Soft Tissue Injury (MASTI) classification system was developed and validated for grading intraoperative periarticular soft tissue injury and bone trauma during TKA. ACL resection created flexion-extension mismatch by increasing the extension gap more than the flexion gap, whilst PCL resection increased the flexion gap proportionally more than the extension gap and created mediolateral laxity in knee flexion but not in extension. Conclusion Robotic-arm assisted TKA was associated with increased accuracy of implant positioning, reduced iatrogenic soft tissue injury, and improved functional rehabilitation compared to conventional jig-based TKA. ACL and PCL resections created unique changes in knee biomechanics that affected flexion-extension gaps and mediolateral soft tissue tension during TKA. On the basis of this thesis, further clinical trials have been established to determine the long-term clinical significance of these findings
    • …
    corecore