10,058 research outputs found

    A lower bound on the quantum query complexity of read-once functions

    Get PDF
    We establish a lower bound of Ω(n)\Omega{(\sqrt{n})} on the bounded-error quantum query complexity of read-once Boolean functions, providing evidence for the conjecture that Ω(D(f))\Omega(\sqrt{D(f)}) is a lower bound for all Boolean functions. Our technique extends a result of Ambainis, based on the idea that successful computation of a function requires ``decoherence'' of initially coherently superposed inputs in the query register, having different values of the function. The number of queries is bounded by comparing the required total amount of decoherence of a judiciously selected set of input-output pairs to an upper bound on the amount achievable in a single query step. We use an extension of this result to general weights on input pairs, and general superpositions of inputs.Comment: 12 pages, LaTe

    Negative weights make adversaries stronger

    Full text link
    The quantum adversary method is one of the most successful techniques for proving lower bounds on quantum query complexity. It gives optimal lower bounds for many problems, has application to classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations rely on the principle that if an algorithm successfully computes a function then, in particular, it is able to distinguish between inputs which map to different values. We present a stronger version of the adversary method which goes beyond this principle to make explicit use of the stronger condition that the algorithm actually computes the function. This new method, which we call ADV+-, has all the advantages of the old: it is a lower bound on bounded-error quantum query complexity, its square is a lower bound on formula size, and it behaves well with respect to function composition. Moreover ADV+- is always at least as large as the adversary method ADV, and we show an example of a monotone function for which ADV+-(f)=Omega(ADV(f)^1.098). We also give examples showing that ADV+- does not face limitations of ADV like the certificate complexity barrier and the property testing barrier.Comment: 29 pages, v2: added automorphism principle, extended to non-boolean functions, simplified examples, added matching upper bound for AD

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page
    • …
    corecore