4,826 research outputs found

    A note on the lower bound for online strip packing

    Get PDF
    This note presents a lower bound of 3/2+33/6≈2.4573/2+\sqrt{33}/6 \approx 2.457 on the competitive ratio for online strip packing. The instance construction we use to obtain the lower bound was first coined by Brown, Baker and Katseff (1980). Recently this instance construction is used to improve the lower bound in computer aided proofs. We derive the best possible lower bound that can be obtained with this instance construction

    Defragmenting the Module Layout of a Partially Reconfigurable Device

    Full text link
    Modern generations of field-programmable gate arrays (FPGAs) allow for partial reconfiguration. In an online context, where the sequence of modules to be loaded on the FPGA is unknown beforehand, repeated insertion and deletion of modules leads to progressive fragmentation of the available space, making defragmentation an important issue. We address this problem by propose an online and an offline component for the defragmentation of the available space. We consider defragmenting the module layout on a reconfigurable device. This corresponds to solving a two-dimensional strip packing problem. Problems of this type are NP-hard in the strong sense, and previous algorithmic results are rather limited. Based on a graph-theoretic characterization of feasible packings, we develop a method that can solve two-dimensional defragmentation instances of practical size to optimality. Our approach is validated for a set of benchmark instances.Comment: 10 pages, 11 figures, 1 table, Latex, to appear in "Engineering of Reconfigurable Systems and Algorithms" as a "Distinguished Paper

    Power Strip Packing of Malleable Demands in Smart Grid

    Full text link
    We consider a problem of supplying electricity to a set of N\mathcal{N} customers in a smart-grid framework. Each customer requires a certain amount of electrical energy which has to be supplied during the time interval [0,1][0,1]. We assume that each demand has to be supplied without interruption, with possible duration between ℓ\ell and rr, which are given system parameters (ℓ≤r\ell\le r). At each moment of time, the power of the grid is the sum of all the consumption rates for the demands being supplied at that moment. Our goal is to find an assignment that minimizes the {\it power peak} - maximal power over [0,1][0,1] - while satisfying all the demands. To do this first we find the lower bound of optimal power peak. We show that the problem depends on whether or not the pair ℓ,r\ell, r belongs to a "good" region G\mathcal{G}. If it does - then an optimal assignment almost perfectly "fills" the rectangle time×power=[0,1]×[0,A]time \times power = [0,1] \times [0, A] with AA being the sum of all the energy demands - thus achieving an optimal power peak AA. Conversely, if ℓ,r\ell, r do not belong to G\mathcal{G}, we identify the lower bound Aˉ>A\bar{A} >A on the optimal value of power peak and introduce a simple linear time algorithm that almost perfectly arranges all the demands in a rectangle [0,A/Aˉ]×[0,Aˉ][0, A /\bar{A}] \times [0, \bar{A}] and show that it is asymptotically optimal
    • …
    corecore